
 

 

Spektrum Industri 

 

Vol. 22, No. 2, 2024, pp. 179-192 

ISSN 1693-6590 

http://journal3.uad.ac.id/index.php/spektrum 

 

 

       https://doi.org/10.12928/si.v22i2.199 spektrum.industri@ie.uad.ac.id   

  

Enhancing Pharma Manufacturing Efficiency: Integrating Lean 

Six Sigma and Fuzzy FMEA for Waste Reduction 

Rindi Kusumawardani *, Adiyodha Ayudha Widyatmoko 

Department of Industrial and Systems Engineering, Institut Teknologi Sepuluh Nopember, Surabaya, 60117, Indonesia 

* Corresponding Author: rindi@its.ac.id 

 

1. Introduction  

During the COVID-19 pandemic, the Pharmaceutical Industry in Indonesia experienced a 

significant increase in GDP. There was a growth of 11.58%, reaching Rp30.8 trillion from 2019 to 

2020. Subsequently, there was another increase of 14.29%, reaching Rp42.4 trillion from 2020 to 

2021. The rise in GDP value in the pharmaceutical industry sector serves as an indicator of a 

substantial increase in demand for pharmaceutical products (Badan Pusat Statistik, 2021). Aligned 

with the Action Plan Document of the Ministry of Health of the Republic of Indonesia for the years 

2020-2024, which emphasizes "Enhancing self-reliance and the use of domestic pharmaceutical and 

medical device products" (Ministry of Health RI, 2020), national companies operating in the 

pharmaceutical industry are required to meet the high demand for pharmaceutical products, especially 

in emergency situations such as the recent Covid-19 pandemic. This is aimed at maintaining national 

resilience in drug supply and improving the life expectancy of patients affected by diseases during the 

ongoing outbreak.  

One pharmaceutical company in Indonesia has secured legal approval to manufacture drugs. 

During on-site observations, several wastes were identified in the drug packaging process, including 

motion waste, transportation waste, waiting waste, and product defects. Motion waste involves 
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unnecessary movements by workers, particularly in the primary and secondary packaging stages, that 

has impact to overall efficiency. Transportation waste arises from the inefficient layout of machinery, 

which is located in different rooms and not arranged sequentially, leading to increased distances for 

material handling, while waiting waste is evident in the significant delays between processes, such as 

the two to three hours lost during machine cleaning in the granulation stage. In the case of defect 

waste, it can be observed that the most common type of defect is crushed and dirty tablets, accounting 

for 25.9%. Other defect types, contributing to 80% of all defects, include broken tablets at 16.5%, 

leaking strips and entangled aluminum foil at 14.3%, and incomplete, duplicate, wrinkled, and empty 

tablets at 13.2%. For some strips with defects deemed still salvageable, a rework process will be 

implemented. This rework process incurs additional time and costs, causing financial and operational 

losses to the company. This indicates the presence of overprocessing waste, an excess process that 

ideally should be reduced or eliminated.  

The Lean Six Sigma approach is employed to address existing problems in the company. This 

approach consists of two concepts: Lean Manufacturing, a method used to eliminate waste in a 

company or organization, and the Six Sigma concept, used to enhance production performance and 

product quality (Mwacharo, 2013). Lean manufacturing (LM) is a profound system designed to enhance 

every manufacturing industry’s efficiency by reducing waste through internationally recognized tools 

and techniques (Badan Pusat Statistik, 2021). The concepts of LM can make it possible to use their 

resources effectively and increase their competitiveness. According to (Deif & ElMaraghy, 2014) and 

(Jilcha & Kitaw, 2015), LM is characterized by doing more with less. It focuses on reducing/eliminating 

waste in order to increase productivity and maximize customer values (Belekoukias et al., 2014). The 

lean manufacturing used in this research refers to the Toyota Production System (TPS), combined 

with the Define, Measure, Analyze, Improve, and Control (DMAIC) methodology from six sigma as 

a model for measuring and improving quality and processes. In the Define phase, the production 

process is depicted using Process Activity Mapping (PAM) to identify waste. In the Measure phase, 

wasteful elements with the highest importance or critical waste are identified, and their sigma values 

are calculated.  

In the Analyze phase, problem analysis is conducted using Failure Modes and Effects Analysis 

(FMEA). FMEA is usually conducted through cross-functional team of expert with different 

backgrounds to determine failure mode’s risk orders and crucial failures that should be improved for 

the performance of the overall systems (Lo et al., 2019). Traditionally, risk assessment in FMEA is 

performed by developing a metric known as the risk priority number (RPN). It is computed by 

multiplying three risk factors, namely severity (S), probability of occurrence (O), and probability of 

detection (D) for each of the failure modes (Xiao et al., 2011)(Panchal et al., 2019). According to (Huang, 

et al., 2020), based on RPN results, the risk order rankings of all failure modes are identified, and then 

rational control actions are developed to maintain the quality and reliability of the subject system. As 

an important early preventive technique, FMEA has been frequently used to provide valuable risk 

information. Therefore, the higher RPNs imply more critical failure modes and more attention to be 

paid for improving system performances (Boral et al., 2020).   

However, the conventional RPN method has been criticized for numerous inherent limitations 

that weaken its effectiveness. According to (Catelani et al., 2018)(Huang et al., 2017)(Liu et al., 2019) 

(Liu et al., 2017) and (Wang et al., 2018), the relative weights of RPN elements and FMEA experts 

are not considered, different evaluation sets of RPN elements may yield the same RPN result, only 

the three RPN elements are considered, and the arithmetical formula of RPN is too simplistic and is 

strongly sensitive to assessments’ variations, which may not make a precise depiction of a system’s 

risk. In traditional FMEA, the RPN system is used to rank improvement priorities, but this approach 

has several limitations. First, it assumes that the three factors—severity, occurrence, and detection—

have equal importance, which can introduce bias since there is no relative weighting among them. 

Second, different activities can yield the same RPN, even though their risk implications may differ, 

as shown in an example where two events have identical RPNs despite differing risk profiles. Third, 
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the traditional RPN calculation does not account for indirect relationships between components 

(Kumru et al., 2013). The fuzzy approach addresses these issues by allowing for more accurate risk 

assessments and enabling complex evaluations (Sun et al., 2019). It enhances the traditional RPN 

calculation by converting it into fuzzy-RPN values, using membership functions to make risk 

assessments clearer and more representative (Nilay et al., 2019). To overcome these limitations, this 

study integrates Fuzzy FMEA, which employs Fuzzy Set (FS) theory to better capture the ambiguities 

and uncertainty in expert assessments (Lakshmi & Baskar, 2019). In the Improve phase, proposals and 

alternative improvement designs are presented based on the RPN ranking order, validated by the 

experts. Lean Six Sigma focuses on waste reduction and process efficiency, which are essential in a 

sector where minor inefficiencies can lead to substantial costs and risks. Meanwhile, Fuzzy FMEA 

enhances risk assessments by capturing the inherent uncertainties in expert evaluations, allowing for 

a more accurate understanding of potential failures. This combination enables pharmaceutical 

companies to streamline operations while ensuring consistent quality and effective risk management, 

ultimately fostering a resilient manufacturing environment capable of meeting both regulatory 

standards and market demands. 

2. Literature Review 

In addressing waste problems in operational activities in the pharmaceutical industry, several 

previous studies have utilized the Lean Six Sigma approach. (Rahman et al., 2010) made efforts to 

minimize waste in the packaging process of cram product at company’s laboratories. The research 

aimed at continuous improvement in the production process. In this study, the first step involved 

identifying nine types of waste using the E-DOWNTIME acronym, followed by measuring their 

sigma values. The factors causing waste were then analyzed using root cause analysis, and 

improvement suggestions were provided, including facility layout concepts. (Hasanah et al., 2020) 

applied lean manufacturing to enhance production outcomes and reduce lead time by identifying and 

working to reduce waste in a pharmaceutical company. The method involved calculating takt time in 

production activities to determine the ideal production time to meet consumer demand. Critical waste 

was identified using Failure Modes and Effects Analysis (FMEA) to calculate the Risk Priority 

Number (RPN), followed by providing several improvement suggestions. 

FMEA itself is a helpful tool for analyzing factors influencing waste. Its use can help identify 

the root causes of waste that require primary attention. In a study by (Lakshmi et al., 2019), the 

identification of potential waste in the production process of liquid soap bottles was analyzed using 

FMEA to reduce the risk of production failure. The determination of critical components for waste 

management was based on the RPN value, calculated from detection, occurrence, and severity for 

each cause. FMEA serves as a forward-looking risk analysis tool used across various sectors to 

mitigate known or potential product failures. In the traditional FMEA model, the Risk Priority 

Number (RPN) is utilized to gauge the level of risk associated with each failure mode. This is 

computed by multiplying the crisp assessment values of three RPN elements (or risk elements), 

occurrence (O), severity (S), and detection (D) corresponding to the failure mode. A 10-point scale 

is employed to quantify the risk associated with each RPN element. A higher RPN score indicates a 

greater impact of the respective failure mode on the system (Ellianto et al., 2015). However, the 

conventional RPN method has been criticized for numerous inherent limitations that weaken its 

effectiveness (Huang et al., 2020). 

Actions derived from FMEA analysis were then evaluated using a fuzzy approach to obtain a 

prioritized sequence of more critical interventions. Evaluating the RPN values from FMEA analysis 

using the fuzzy approach required input from stakeholders. (Catelani et al., 2018) initially presented a 

fuzzy logic-based FMEA approach for dealing with some of the drawbacks in the traditional method 

of strictly numerical evaluation. Another research conducted by (Bowles et al., 1995) proposed a fuzzy 

version of the technique for order preference by similarity to ideal solution (TOPSIS) to find risk 

priority ranking of the failure modes in FMEA.  (Braglia et al., 2003) provided a comprehensive survey 
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of the improvement risk evaluation methods for FMEA. From the previous research it could be seen 

that the use of the fuzzy approach in FMEA can help improve the accuracy of risk assessments and 

also enable more complex risk evaluations (Sun et al., 2019). The risk values obtained from calculating 

factors in FMEA, represented by RPN, are transformed into fuzzy-RPN values using membership 

functions corresponding to the risk categories used. Membership functions are employed to convert 

risk values into a more understandable and representative form, enabling the determination of 

appropriate risk control measures. The result of the FMEA evaluation using the fuzzy approach is 

the fuzzy-RPN value, which is then ranked to obtain a prioritized sequence of improvement 

suggestions that are more objective and independent (Nilay et al., 2019). 

3. Method  

3.1. Data Collection 

In the data collection stage, data on the company's current state is collected to identify problems 

with the focus object. In this stage, the genchi genbutsu method or direct observation employed to the 

focus object and engages in discussions with stakeholders involved in the production process. 

3.2. Data Processing 

In the data processing stage, a detailed and systematic depiction of the production process, Define 

stage, and Measure stage of the DMAIC methodology in Six Sigma is carried out. This stage includes 

the Define process to identify potential problems during the production process, identifying the flow 

of information and materials in the production process, mapping time and activities in the production 

process using Process Activity Mapping (PAM), and identifying waste in the production process based 

on the depictions of the production process and PAM. Subsequently, in the Measure stage, data 

processing and calculations are conducted to identify critical waste in the production process, followed 

by the calculation of sigma values for the detected critical waste. 

3.3. Data Analysis and Interpretation 

In the Analyze phase, this study will focus on identifying critical waste within the production 

process in the pharmaceutical industry. The process consists of several essential steps: initially, the 

root causes of critical waste will be determined using the Five Whys analysis method, which enables 

a comprehensive investigation of issues through a series of up to five iterative questions. 

Subsequently, a FMEA will be performed, informed by the findings from the Five Whys, and 

enhanced by incorporating a fuzzy logic approach to improve risk assessment accuracy.  Fuzzy offers 

a more realistic framework compared to classical methods by handling imprecise data through 

mathematical data processing (Silva et al., 2014).  To determine fuzzy numbers for each factor in FMEA 

the triangular fuzzy set is employed, the triangular fuzzy set method is utilized, refers from the 

framework established by (Wang et al., 2009). This approach adheres to a scale of 1 to 10, consistent 

with traditional FMEA metrics, allowing for seamless integration of qualitative assessments into 

quantitative analyses. For the severity factor, linguistic terms such as "none" to “very dangerous” are 

mapped to fuzzy sets, which represent the potential impact of issues on production processes. 

Similarly, for the occurrence factor, terms ranging from "never" to "very often" define the likelihood 

of an issue occurring, while the detection factor uses terms from "certain" to "not detectable" to 

evaluate the ease of identifying issues. Each fuzzy value is derived from a corresponding membership 

function that translates qualitative assessments into quantitative representations. Finally, fuzzy-RPN 

calculations aggregate these factors to prioritize improvement recommendations effectively. 

In the Improve stage, optimal alternative improvement recommendations are formulated for 

implementation by the company. Each proposed alternative improvement recommendation is 

validated with stakeholders to obtain recommendations that align with the company's needs and 

conditions. 
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4. Results and Discussion 

4.1. Process Activity Mapping 

In designing PAM, the method used involves direct observation of each production process, 

documenting all activities occurring in each process. Subsequently, validation is carried out with 

stakeholders in each process to enhance the accuracy of the results. Each activity in the production 

process is classified into three categories: Value-Added (VA) activities, Essential but Non-Value 

Added (ENVA) activities, and Non-Value Added (NVA) activities. Additionally, each Based on the 

comprehensive analysis of the entire drug production process using PAM. 

Table 1.  Process Activity Mapping (PAM) Recapitulation 

Activity Classification Activity 

Activity 
Number 

of 

Activity 

Percentage 
Time 

(minute) 

Percentage of 

Activity Time 

VA ENVA NVA 

Activity 

Time 
(minute) 

Activity 

Percentage 

Activity 

Time 
(minute) 

Activity 

Percentage 

Activity 

Time 
(minute) 

Activity 

Percentage 

Operation 25 23% 5,370.34 62% 5,309.67 98% 0.67 0% 60.00 2% 

Delay 27 24% 243.11 3% 20.08 0% 147.83 48% 75.20 3% 

Transportation 46 41% 168.51 2% 16.49 0% 69.44 22% 82.58 3% 

Storage 4 4% 2,700.00 31% - 0% - 0% 2,700.00 92% 

Inspection 9 8% 165.25 2% 70.00 1% 91.25 30% 4.00 0% 

Total 111 100% 8,647.21 100% 5,416.24 309.19 2,921.78 

Activity Classification Percentage 63% 4% 34% 

 

Based on the summary of PAM in Table 1, it can be observed that there are a total of 111 activities 

in the production process. The breakdown of activities reveals that VA activities last for 5.416 

minutes, accounting for 63% of the total activities, ENVA activities last for 309 minutes, representing 

4% of the total activities, and NVA activities last for 2,921 minutes, making up 34% of the total 

activities. When categorized by activity type, the percentages for each activity are as follows: 23% for 

operation activities, 24% for delay activities, 41% for transportation activities, 4% for storage 

activities, and 8% for inspection activities. 

4.2. Critical Waste 

The waste identification process obtained during field observations and PAM identification, a 

total of 37 activities were identified as causing waste based on the verification and validation process 

with stakeholders. Using the identified waste data, the next step is to determine critical waste in the 

drug production process. To determine critical waste, the genba shikumi is employed, consisting of 

four matrices: the waste matrix, correlation matrix, priority matrix, and absolute importance matrix. 

Based on the waste matrix, it was found that the most prevalent types of waste are waiting, 

motion, and transportation. The primary cause of waiting waste is the staging process, such as staging 

in pre-production, pre-printing staging, and pre-packaging staging. The high occurrence of motion 

waste is attributed to numerous preparations in each process confirmed by workers, which can be 

reduced or even eliminated. Suboptimal production floor layout results in significant material and 

worker movements, contributing to the high occurrence of transportation waste. The second step in 

identifying critical waste is designing the correlation matrix. The correlation values between the 

identified observed problems will be summed up to form the correlation vector value. The third step 

in identifying critical waste is designing the priority matrix. In designing the priority matrix, observed 

problems, which are problems in the drug production process, can be identified for their relevance to 

Key Performance Indicators (KPIs) in the production process. The KPIs used encompass aspects of 

productivity, budget control, rework reduction, product availability realization, and reject rate 

reduction. These KPIs constitute the core of the Production Manager's KPIs provided by the General 

Production Manager. The values of the correlations between the identified observed problems and 

KPIs will be summed up to form the priority vector value. 
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From the priority matrix result, it can be determined that the highest priority vector value is 

associated with the observed problem related to improper machine setup in the printing process, which 

can lead to a high number of defective products. This is connected to all KPI values because defective 

products undergo rework, and if rework is not possible, they are rejected. Defective products also 

affect the realization of product availability and productivity rates, and all of these factors contribute 

to an increase in production costs. A similar situation occurs with the observed problem related to 

improper initial setup of the packaging machine, which can impact all KPI values. 

The final step in identifying critical waste is designing the absolute importance matrix. In 

designing the priority matrix, the values of the waste vector, correlation vector, and priority vector 

will be summed up to generate the absolute importance vector value. Based on the absolute importance 

vector value, the severity level of each observed problem can be determined. The result of this absolute 

importance matrix is the ranking of observed problems based on their severity level, revealing which 

ones constitute critical waste in the production process. Table 2 shows the List of Observed Problems 

Identified as Critical Waste. 

Table 2.  List of Observed Problems Identified as Critical Waste 

No Observed Problems 
Vector of Absolute 

Interest 

1 
Setting the initial packaging machine incorrectly can cause defects in the product and 

packaging 
10 

2 Storing raw materials in the staging area to wait for production 8 

3 
Store the VAT barrel containing bulk Drug X in the staging room to wait for its turn to 

be printed 
8 

4 Setting the printing machine incorrectly can cause defects in the product 8 

5 Waiting for the arrival of raw material shipments from the raw material warehouse 8 

 

4.3. Calculation of Sigma Value for Critical Waste 

After identifying critical waste based on the ranking of the absolute importance matrix, the next 

step is to calculate the sigma value for critical waste. The purpose of calculating the sigma value for 

critical waste is to assess the performance of the existing conditions in the production process. Table 

3 show the critical waste in the production process based on muda matrix. 

Table 3.  Critical Waste in the Production Process Based on Muda Matrix 

Observed Problems Waste 
Performing an initial setup of the packaging machine that is not appropriate can result in defects in the 

product and its packaging 

. Waiting 

. Defect 

Storing raw materials in the staging area to await their turn in production . Waiting 

Storing VAT barrels containing the input of the drug in the staging area, waiting for the printing turn . Waiting 

Performing an improper setup of the printing machine can result in defects in the product 
. Waiting 

. Defect 

Waiting for the arrival of raw material shipments from the raw material warehouse 
. Motion 

. Waiting 

 

4.3.1. Waste Waiting 

Waste waiting is the primary critical waste that occurs in the drug production process based on 

genba shikumi results. Based on direct observation and discussions in the field, the majority of waiting 

waste occurs in the staging process, making the Critical-to-Quality (CTQ) for waiting waste the total 

staging time generated during the drug production process. Table 4 shows the calculation of the sigma 

value for Waste waiting.  Based on Table 4, it is known that waiting waste has a sigma value of 1.98. 

The total staging time of 2730 minutes is considered to have a significant impact on the overall 
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production process time, which can lead to schedule delays and failure to meet the target demand. 

Therefore, an improvement in the sigma value for waiting waste is necessary. 

Table 4.  Sigma Value for Waste Waiting 

Step Action Result Unit 

1 The production process Production Process Time  

2 Total availability time 8647.21 Minute 

3 Total staging time 2730 Minute 

4 Calculate the failure rate 0.315708766 Proportion 

5 Number of CTQs 1  

6 Probability of failure rate per CTQ 0.315708766 DPO 

7 Calculating DPMO 315708.7662 DPMO 

8 Convert DPMO to sigma value 1.98 Sigma 

 

4.3.2. Waste Defect 

Defect waste is the second most critical waste that occurs in the drug production process based 

on the genba shikumi results. The total calculated defects are primary packaging defects, specifically 

strips containing the drug. Based on Table 5, it is known that there are seven Critical to Quality (CTQ) 

factors for defect waste, with a total of 172,490 defective strips during the year 2022. The sigma value 

for defect waste is already relatively high. Pharmaceutical industry companies aim to achieve zero 

defects. Therefore, improving the quality of the production process is crucial to reaching this target. 

Table 5.  Sigma Value for Waste Defect 

Step Action Result Unit 

1 The production process Defect product  

2 Total availability time 61,600,000 Minute 

3 Total defect product 172,490 Minute 

4 Calculate the failure rate 0.0028 Proportion 

5 Number of CTQs 7  

6 Probability of failure rate per CTQ 0.0004 DPO 

7 Calculating DPMO 400.023 DPMO 

8 Convert DPMO to sigma value 4.85 Sigma 

 

4.3.3. Waste Motion 

Waste motion is a wasteful activity of workers that adds little or no value to the production 

process. This motion waste can impact the high lead time of the process, making the CTQ for waste 

motion the total NVA time in the production process. Table 6 shows the calculation of the sigma value 

for waste motion. The result of the sigma value for waste motion still needs improvement, which can 

be achieved by making enhancements to reduce NVA in the production process. 

Table 6.  Sigma Value for Waste Motion 

Step Action Result Unit 

1 The production process 
Production 

process 
 

2 Total availability time 8647.21 Strip 

3 Total NVA time 2929.78 Strip 

4 Calculate the failure rate 0.3388 Proportion 

5 Number of CTQs 1  

6 Probability of failure rate per CTQ 0.3388 DPO 

7 Calculating DPMO 338812.2 DPMO 
8 Convert DPMO to sigma value 1.92 Sigma 
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4.4. Failure Modes and Effects Analysis (FMEA) 

The analysis phase involve analyzing the root cause of critical waste using the five whys analysis 

method. Subsequently, analyzing critical waste based on the results of the five whys analysis using 

Failure Modes and Effects Analysis (FMEA) to determine the Risk Priority Number (RPN), which is 

then evaluated using a fuzzy approach. 

The identification process of the main root causes of critical waste that have been identified, 

further analysis will be conducted to determine the values of severity, occurrence, and detection 

factors. The values of these three factors are obtained from interviews and discussions with the 

Production Manager. The values of each failure factor are then multiplied to generate the Risk Priority 

Number (RPN). To identify the values of severity, occurrence, and detection factors, it is necessary to 

establish criteria standards. Criteria standards for the three factors, severity, occurrence, and detection, 

are obtained based on discussions with several respondents directly involved in the production 

process. Based on the analysis of the 20 problems using the 5 Whys method, RPN values were 

obtained for each problem, and RPN scores above 70 were selected. Consequently, a total of 6 

problems were identified, as indicated in Table 7. 

Table 7.  Problems with The Highest RPN Scores 

Problem 

Code 
Problems S O D 

Risk 

Priority 

Number 

R7 The number of machines for the granulation to lubrication process is still insufficient 4 6 5 120 

R12 The number of packaging machines is still insufficient 4 6 5 120 

R8 The number of workers is less 3 6 5 90 

R10 The printing process for other products is ahead of schedule 7 3 4 84 

R14 The human error factor from the operator when printing samples to be submitted to IPC 8 2 5 80 

R9 
Based on CPOB, a pharmaceutical product must not be contaminated with product 

contents other pharmacies 
7 5 2 70 

4.5. Fuzzy-FMEA 

In determining the fuzzy numbers for the importance weights of all factors, a set of fuzzy numbers 

is used, employing a scale from 0 to 1. Subsequently, linguistic scales defined as very low, low, 

moderate, high, and very high are utilized. The references used in determining the degree of 

membership in the fuzzy set are based on research conducted by (Wang et al., 2009).  Next, aggregation 

calculations of fuzzy number assessments for each factor in FMEA are conducted. The aim is to 

combine all membership degrees so that the output will be a number that changes linearly with respect 

to the input variables. Equations (1), equation (2), and equation (3) illustrate the formulas used to 

perform the aggregation calculations of fuzzy number assessments for severity, occurrence, and 

detection factors.  

 𝑅1
𝑆 =

1

𝑛
∑ ℎ𝑗𝑅𝑖𝑗

𝑆𝑚
𝑗=1 = (∑ ℎ𝑗𝑅𝑖𝑗𝐿

𝑆
𝑗=1 , ∑ ℎ𝑗𝑅𝑖𝑗𝑀

𝑆
𝑗=1 , ∑ ℎ𝑗𝑅𝑖𝑗𝑈

𝑆
𝑗=1 )    (1) 

 𝑅1
𝑂 =

1

𝑛
∑ ℎ𝑗𝑅𝑖𝑗

𝑂𝑚
𝑗=1 = (∑ ℎ𝑗𝑅𝑖𝑗𝐿

𝑂
𝑗=1 , ∑ ℎ𝑗𝑅𝑖𝑗𝑀1

𝑂
𝑗=1 , ∑ ℎ𝑗𝑅𝑖𝑗𝑀2

𝑂
𝑗=1 , ∑ ℎ𝑗𝑅1𝑗𝑈

𝑂
𝑗=1 )  (2) 

 𝑅𝑖
𝐷 =

1

𝑛
∑ ℎ𝑗𝑅𝑖𝑗

𝐷𝑚
𝑗=1 = (∑ ℎ𝑗𝑅𝑖𝑗𝐿

𝐷
𝑗=1 , ∑ ℎ𝑗𝑅𝑖𝑗𝑀

𝐷
𝑗=1 , ∑ ℎ𝑗𝑅1𝑗𝑈

𝐷
𝑗=1 )  (3) 

Where, R is set of fuzzy numbers for each risk on factors S, O, D. Then, h is relative importance 

weight of each evaluator, i is risk 1, risk 2, etc. (i = 1, 2... n), and j is evaluator 1, evaluator 2, etc. (j = 

1, 2..., m). 

4.5.1. Aggregation of Fuzzy Number Assessments for Each Problem 

Based on the RPN ranking from FMEA, aggregation of fuzzy number assessments for each 

problem on severity, occurrence, and detection factors is conducted to form a set of fuzzy numbers. 
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Subsequently, fuzzy number assessments are made using (1) for problems on severity factors, (2) for 

problems on occurrence factors, and (3) for problems on detection factors. For example, the 

calculation of the occurrence fuzzy number value for an problem with code R1 is obtained as follows. 

 𝑅1
0 =  

1

4
 (1 + 2 + 3 + 4)   

 𝑅1
0 = 2.5  

The R1 problem has an occurrence value of 2, the fuzzy number set used to calculate the R value 

for problems on the occurrence factor is {1, 2, 3, 4}. These membership degrees will serve as input in 

the calculation formula.  

4.5.2. Aggregation of Importance Weights for Each Factor in FMEA 

After aggregating fuzzy number assessments for each problem, the next step is to aggregate the 

importance weights for each factor in FMEA, namely severity, occurrence, and detection factors. 

Subsequently, importance weights for each factor are assessed using (4) for severity, (5) for 

occurrence, and (6) for detection factors. From these assessments, the weights for each factor are then 

averaged to determine their percentages.  

 𝑊1
𝑆 =

1

𝑛
∑ ℎ𝑗𝑊𝑖𝑗

𝑆𝑚
𝑗=1 = (∑ ℎ𝑗𝑊𝑖𝑗𝐿

𝑆
𝑗=1 , ∑ ℎ𝑗𝑊𝑖𝑗𝑀

𝑆
𝑗=1 , ∑ ℎ𝑗𝑊𝑖𝑗𝑈

𝑆
𝑗=1 )   (4) 

 𝑊1
𝑂 =

1

𝑛
∑ ℎ𝑗𝑊𝑖𝑗

𝑂𝑚
𝑗=1 = (∑ ℎ𝑗𝑊𝑖𝑗𝐿

𝑂
𝑗=1 , ∑ ℎ𝑗𝑊𝑖𝑗𝑀

𝑂
𝑗=1 , ∑ ℎ𝑗𝑊𝑖𝑗𝑈

𝑂
𝑗=1 )   (5) 

 𝑊1
𝐷 =

1

𝑛
∑ ℎ𝑗𝑊𝑖𝑗

𝐷𝑚
𝑗=1 = (∑ ℎ𝑗𝑊𝑖𝑗𝐿

𝐷
𝑗=1 , ∑ ℎ𝑗𝑊𝑖𝑗𝑀

𝐷
𝑗=1 , ∑ ℎ𝑗𝑊𝑖𝑗𝑈

𝐷
𝑗=1 )  (6) 

 

Where, W is set of importance weights for factors S, O, D. Then, h is relative importance weight of 

each evaluator, i is risk 1, risk 2, etc. (i = 1, 2... n), and j is evaluator 1, evaluator 2, etc. (j = 1, 2..., 

m). For example, the calculation of the W detection for the problem with code R1 is obtained from 

the following calculation. 

 𝑊1
𝐷 =  

1

3
 (0.25 + 0.5 + 0.75)  

 𝑊1
𝐷 = 0.5  

The R1 problem has a detection value of 5, the fuzzy number set used to calculate the W value 

for the problem's weight on the detection factor is {0.25, 0.5, 0.75}. After obtaining all the weight 

values for the problems on the three factors, the average weight for each factor can be determined. 

The severity factor has an average weight of 0.38333 or 39.83% of all factors, the occurrence factor 

has an average weight of 0.23333 or 24.24% of all factors, and the detection factor has an average 

weight of 0.34582 or 35.93% of all factors. 

4.2.1. Calculation of Fuzzy-RPN 

The next stage involves calculating the fuzzy-RPN value. The values used in the fuzzy-RPN 

calculation are derived from the aggregation calculation results of fuzzy number assessments for 

each problem and the aggregation calculation results of importance weights for each factor in FMEA. 

Equation 7 depicts the formula utilized in performing the fuzzy-RPN calculation. 

 
𝐹𝑅𝑃𝑁𝑖 =  𝑅𝑖

𝑆 

𝑊𝑆

𝑊𝑆+𝑊𝑂+𝑊𝐷
× 𝑅𝑖

𝑂 

𝑊𝑂

𝑊𝑆+𝑊𝑂+𝑊𝐷
× 𝑅𝑖

𝐷 

𝑊𝐷

𝑊𝑆+𝑊𝑂+𝑊𝐷
 

(7) 
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An example calculation of the fuzzy-RPN value for the R1 problem is obtained from the following 

calculation. The highest ranking of Fuzzy-RPN is obtained based on Table 8. 

 𝐹𝑅𝑃𝑁1 =  5 
0,38333

0,38333+0,23333+0,34582
× 2.5 

0,23333
0,38333+0,23333+0,34582

× 5 
0,34582

0,38333+0,23333+0,34582  

Table 8.  Problems with The Highest Fuzzy-RPN Scores 

Problem 

Code 
Problems 

Average 

Importance 

Weight S 

Average 

Importance 

Weight O 

Average 

Importance 

Weight D 

FRPN 

R14 

The human error factor from the operator 

when printing samples to be submitted to 

IPC 

2.29 1.25 1.78 5.10 

R2 
The operator forgot to calibrate the 

packaging machine every two weeks 
2.29 1.07 1.90 4.68 

R7 

The number of machines for the 

granulation to lubrication process is still 

insufficient 

1.74 1.48 1.78 4.57 

R12 
The number of packaging machines is 

still insufficient 
1.74 1.48 1.78 4.56 

R10 
The printing process for other products is 

ahead of schedule 
2.17 1.25 1.65 4.46 

R1 
There is no standard procedure for 

operating the packaging machine settings 
1.90 1.25 1.78 4.23 

 

4.6. Comparison of the Highest Score Values of RPN FMEA and Fuzzy-RPN 

Based on the calculation results of FMEA RPN and Fuzzy-RPN, the composition of the top-

ranking problems in FMEA and the results of the fuzzy-RPN evaluation did not change significantly. 

However, problems with codes R8 and R9, which previously occupied the fourth and fifth positions 

in FMEA, did not appear in the rankings of the fuzzy-RPN evaluation. These two problems were 

replaced by problems with codes R2 and R1. This could occur because in the RPN evaluation using 

the fuzzy method, there is weighting for each severity, occurrence, and detection factor. For the 

weighting calculation results for each factor, it is known that the weight value for the severity factor 

is 0.38333, for the occurrence factor is 0.23333, and for the detection factor is 0.34583. The severity 

factor has a higher weight than the other factors, the weight of the detection factor is also not 

significantly lower compared to the severity factor, and the occurrence factor has the lowest weight 

among the other factors. 

Furthermore, based on the FMEA analysis results, it is known that the R1 problem has a severity 

value of 5, an occurrence value of 2, and a detection value of 5. It is the moderate yet relatively high 

severity and detection values that make the R1 problem have a high fuzzy-RPN value. Meanwhile, 

for the R2 problem, which has a severity value of 8, an occurrence value of 1, and a detection value 

of 6, it is the severity value of 8 that makes the R2 problem has a high fuzzy-RPN value. After 

conducted the validation results from the production manager, the fuzzy-RPN rankings are then used 

as the basis for designing alternative improvement suggestions in the subsequent sections.  According 

to the validation process with the production manager, the fuzzy-RPN ranking resulting from the RPN 

evaluation using fuzzy methods are more necessary for the company to initiate improvement efforts. 

4.7. Improvement 

Alternative improvement suggestions can be determined for future implementation by the 

manufacturing company. Based on the suggestions for the top six problems shown in Table 9, each 

reason in determining improvement recommendations is explained. In R14 and R2, the configuration 

applied to the printing machine for tablet printing process is influenced by the analysis results 

conducted by the IPC on the condition of the product feed from granulation to lubrication processes. 
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Each product batch has slightly different conditions, thus the machine must adjust its speed and 

compression force to ensure the final product feed in the form of tablets does not experience defects. 

Inaccurate sampling activities for submission to the IPC may lead to errors in the IPC's analysis of the 

product feed from a batch, thus affecting the duration of the printing machine operation. To address 

problems R14 and R2, the implementation of a quality form can be applied. Implementing machine 

calibration activity documentation cards can also assist in controlling the details of calibration actions 

on the machine. Documentation is performed after the operator performs machine calibration activities 

by filling out the machine calibration documentation card and reporting it to the supervisor or assistant 

manager. 

Table 9.  Improvement Suggestions 

Problem 

Code 
Problems Suggestions 

R14 

The human error factor from the 

operator when printing samples to be 

submitted to IPC 

Designing quality forms for raw products before printing and 

inspection forms for the printing process. 

R2 
The operator forgot to calibrate the 

packaging machine every two weeks 

Documenting calibration results on the inspection form and 

on the board in front of the machine room 

R7 

The number of machines for the 

granulation to lubrication process is still 

insufficient 

Analysis and calculation of the utilization of granulation to 

lubrication machines to determine the necessity of current 

machine investment 

R12 
The number of packaging machines is 

still insufficient 

Analysis and calculation of the utilization of printing 

machines to determine the necessity of current machine 

investment 

R10 
The printing process for other products 

is ahead of schedule 

Comprehensive adjustment of production schedules by 

implementing the Shortest Processing Time (SPT) scheduling 

method 

R1 

There is no standard procedure for 

operating the packaging machine 

settings 

Designing an orthogonal array experiment to determine 

optimal settings on the packaging machine. 

 

Alternative improvement suggestions that can be provided for R7 and R12 involve investing in 

machines for the granulation to lubrication process to reduce production queues for R7 problem and 

investing in printing machines for R12 problem. However, in determining the appropriate alternative 

improvement suggestions to be implemented by the company, there are several crucial factors to 

consider. The existing production space conditions, which are already quite full, make decisions to 

invest in additional machines need to be carefully considered. Additionally, the considerable 

investment value also greatly influences the decision to add machines. To determine the decision to 

invest in machines, analysis and calculation of machine utilities are required to understand the existing 

conditions of the machinery owned by the company. 

For R10 problem, scheduling of the printing process is conducted to plan and control schedules 

while considering resource allocation and existing resource capacity. In determining the most optimal 

printing process scheduling, there are several objective criteria that need to be considered, namely 

reducing completion time and customer waiting time. The method that can be applied is using the 

Shortest Processing Time (SPT) scheduling method. 

Lastly, for R1 problem, in operating the packaging machine, initial setting errors by the operator 

can result in defects in the strip and tablet products. Defects in products that can occur from errors in 

machine packaging settings include leaking strips, overlapping aluminum foil pieces, and tablets in 

aluminum foil that are not intact, double, wrinkled, and empty. Alternative improvement suggestions 

that can be provided are by implementing orthogonal array experiments to determine optimal settings 

on the packaging machine. Orthogonal array is a method in the Taguchi concept used to design 

experiments efficiently with the aim of obtaining maximum information about all factors affecting a 

parameter, but with minimal number of experiments required. 
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This research implements the studies of (Kumru et al., 2013) that applied Fuzzy FMEA in public 

hospitals, and (Nilay et al., 2019) that utilized the method in pharmaceutical quality control, showcasing 

the adaptability of Fuzzy FMEA across different sectors. Additionally, it aligns with (Lakshmi et al., 

2019) and (Hasanah et al., 2020) that emphasized the integration between Lean and FMEA in reducing 

waste and improving efficiency in the pharmaceutical industry. By integrating these approaches, this 

study not only confirms earlier findings but also provides new insights for improving production 

processes through a clearer risk evaluation framework, significantly contributing to the field of 

operational excellence. 

5. Conclusion 

Based on the comprehensive analysis of the entire production process using PAM, it was revealed 

that VA activities contribute about 63% of total production activities, while NVA and ENVA activities 

contribute approximately 34% and 4%, respectively. NVA activities were identified as the main 

sources of waste in the production process. A total of 37 waste-causing activities were identified, with 

33 classifieds as NVA, 1 as ENVA, and 3 additional activities identified through discussions with 

Production Managers. Subsequently, through further identification using the genba shikumi method, 

five critical waste-causing activities were determined: inadequate machine packaging setting 

standards, operator oversight in machine calibration, low machine count in granulation and lubrication 

processes, insufficient packaging machinery, and delays in raw material delivery. These were ranked 

based on their fuzzy-RPN values, with the highest-ranked being human error during sample printing 

(R14), followed by other identified problems. This research has significant practical implications for 

the pharmaceutical industry by providing a structured approach to identifying and mitigating waste in 

production processes. Other companies can apply these findings by adopting the Lean and Fuzzy 

FMEA framework to analyze their own operations, which will help them to identified non-value-

added activities and improve efficiency by prioritizing the most critical issues based on their weighted 

importance. Future research could explore the application of the Fuzzy FMEA framework in other 

industries, both manufacture and service industries. Additionally, studies could investigate how this 

approach performs under varying conditions, such as different production scales or technological 

advancements. Research could also focus on longitudinal studies that track the long-term impacts of 

implementing the proposed improvements on operational efficiency and financial performance. 
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