
 

Spektrum Industri 

 

Vol. 22, No. 2, 2024, pp. 90-110 

ISSN 1693-6590 

http://journal3.uad.ac.id/index.php/spektrum 

 

 

       https://doi.org/10.12928/si.v22i2.227 spektrum.industri@ie.uad.ac.id   

  

Efficiency Evaluation in Indonesia's Quarrying Industry Using 

Variable Combinations DEA  

Erni Puspanantasari Putri a,*, Ivan A. Parinov b, Chuleeporn Wongloucha c 

a Department of Industrial Engineering, Universitas 17 Agustus 1945 Surabaya, Surabaya 60118, Indonesia 
b I. I. Vorovich Mathematics, Mechanics and Computer Sciences, Southern Federal University, Rostov-on-Don 344006, 

Russia 
c Faculty of Economics, Khon Kaen University, Khon Kaen 40002, Thailand 

* Corresponding Author: erniputri@untag-sby.ac.id  

 

1. Introduction  

Selecting the ideal input and output weights systematically helps improve the decision-making 

units' (DMUs') performance evaluation. This method avoids the possible difficulties in coming up 

with a standard foundation for classifying homogenous units and organizing the output from several 
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 Data Envelopment Analysis (DEA) is a method considered to evaluate a 

company's performance. DEA applies multiplies the input and output 

variables for analyzing the efficiency but does not provide guidance in 

selecting those variables. As a rule, researchers use several methods. If the 

number of variables used is too many, it will affect the efficiency value. 

This will reduce the strength of the efficiency value, which can cause all 

DMU values to be efficient.   DEA and variable selection are important in 

performance evaluation because DEA aids in determining relative 

efficiency, whereas variable selection guarantees that the evaluation is 

based on the most relevant and significant aspects. The purpose of this 

study is to suggest the variable combination method for subtracting the 

number of variables that will be utilized in implementing the DEA. The 

method used in this study is the Average Input Variable Combinations 

(VCs)-Variable Returns-to-Scale (VRS) DEA.  The data were classified, 

defined, and processed with a view to computing efficiency scores and 

DMU classifications. The research result indicated that the proposed 

method (VCs-DEA) treats the variable reduction factor and the average 

calculation factor to obtain the final result of the efficiency score.  These 

two factors contribute to the accuracy of the efficiency value. Some real-

world implications of these findings, such as making better use of 

resources, streamlining operations, and coming up with new plans, 

Furthermore, the evidence may be used to benchmark performance as well 

as help decision-makers in creating more effective policy. This study finds 

that only 1 out of 12 DMUs is efficient (8%), while the remaining 11 are 

inefficient (92%). Indonesia quarrying establishment can be classified into 

3 categories such as Optimal Category (S-Sand); Middle Category (LS-

Lime-Stone; F-Feldspars; Gr-Granite; SA-Stone and Andesite; K-Kaolin; 

Q-Quartz; and G-Gravel); and Less Category (So-Soil; C-Clay; M-Marble; 

and O-Others). 
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effective boundaries. Restricting the weights according to the technical or intrinsic relationships 

between pertinent inputs and outcomes makes efficient frontier ranking easier. Additionally, it 

develops a logical structure that unifies different factors throughout all undervalued variables and 

DMUs. This approach effectively investigates the nuances of the inputs and outputs of homogenous 

units while evaluating their efficiency using the data envelopment analysis (DEA) method (Kraidi et 

al., 2024). 

DEA is a linear programming-based method that adopts non-stochastic and non-parametric 

approaches in assessing relative efficiency. It produces the optimal ratios of efficiency across 

multiple tests that determine a frontier against which peer units are assessed. The scores of the 

efficiencies of units range from 0 for inefficient units to 1 for efficient units. Partitioning the 0–1 

interval helps analyze weak and strong efficiency points and frontier dynamics (Daneshvar & 

Adesina, 2018a; Daneshvar & Adesina, 2018b). Efficient DMUs are a benchmark for inefficient 

DMU performance. The efficiency score, therefore, represents an efficient DMU, and DEA acts as a 

benchmark for the latter. DEA evaluates DMUs by setting efficient ones as standards. The efficient 

DMUs receive a score of 1, while inefficient DMUs receive a score less than 1. The efficiency scores, 

therefore, lie between 0 and 1 (Vittal et. al., 2021).        

The selection of input-output variables is critical in determining the effectiveness of DEA. 

However, there are few discussions in the literature on the choice of input or output variables. Most 

studies just specify the choice of variables in their research. Two major views regarding DEA are the 

selection of suitable methodologies and data variables (Golany and Roll, 1989). The proper selection 

of variables is so vital, especially when there are more input-output variables, small weighted models, 

or inaccuracy within the results (Jenkins and Anderson, 2003). Hence, this reduction of variables is 

helpful, but there have not been any specific rules to rely on. However, the correlation analysis that 

has been advocated often leads to variable outcomes, which may not be reproducible. Hence, 

recently, statistical methods are being employed to refine this variable selection process (Wagner and 

Shimshak, 2007). 

Nataraja and Johnson (2011) reviewed eight different variable selection methodologies and 

developed guidelines on the selection of an optimal methodology. The methods that come under this 

category are: statistical testing, efficiency contribution measure, or ECM; bootstrapping; regression-

based testing; PCA-DEA; recursive selection; variable reduction; and eigenvalue-based testing. 

According to that, Pastor et al. (2002) presented a variable relevance assessment method called ECM, 

or efficiency contribution measure, which designates the variables that affect efficiency. The method 

is based on two DEA formulations, with and without candidate variables (those to be tested). Then 

there are some binomial statistical tests that identify whether these variables contribute to efficiency 

or not. There are also two ways to perform the method: forward selection and backward elimination. 

Jenkins and Anderson (2003) suggested that partial correlation should exclude variables that 

carry minimum information. It denotes information with the help of production unit variance. 

Variables having zero variance show the same information. Removing highly correlated variables 

severely affects efficiency scores. The relevance of variables can be analyzed with the support of 

partial correlation. Highly correlated variables are combined into one input or output with the support 

of eigenvalues in order to decrease the dimensions of the production function. Daraio and Simar 

(2007) also recommended integrating those variables through eigenvalues. Ueda and Hoshiai (1997) 

and Adler and Golany (2001) extended the use of PCA-DEA, whereby PCA is applied to reduce the 

dimensionality of data. In PCA, weighted linear combinations are used to attain maximum variance 

among the components while not being interrelated. The main components obtained from linear 

combinations of the original variables are arranged in order of importance according to the magnitude 

of the variances. The first component replaces the original variable without any loss of information. 

This method extends the calculation of efficiency by the DEA method. 

Kumar and Singh (2021) present the research on the banking industry, which includes a large 

number of input/output factors that affect the operational efficiencies. The study applies the standard 

strategy of DEA for finding out the most influencing input factors and simplifies the model by 



92 
Spektrum Industri 

ISSN 1693-6590 
Vol. 22, No. 2, 2024, pp. 90-110 

 

 

Erni Puspanantasari Putri (Efficiency Evaluation in Indonesia's Quarrying Industry Using Variable Combinations 

DEA) 

 

reducing the redundant variables. The result of this approach turned out to be more accurate 

performance evaluation of the banks in addition to a more realistic assessment of their operational 

efficiencies. This, in turn enhances the outcomes of DEA analysis for financial decision-making. 

Zhang and Wang (2022) establish that variable reduction techniques are some of the most important 

techniques in DEA studies given the complication of data. They compare factor analysis with 

principal component analysis; from the comparisons, they established that the latter technique allows 

for better retention of the important information, hence enhancing the efficiency of the DEA models. 

The finding is beneficial for both researchers and practitioners in DEA in terms of selecting 

appropriate variable reduction techniques. 

Khan and Ghaffar (2023) discussed using machine learning in DEA to advance variable 

analysis. Thereafter, insignificantly contributing input variables were identified, and a DEA model 

was reduced using a machine learning algorithm. The resultant findings showed that machine 

learning improves the accuracy of variable reduction and uncovers hidden patterns in the data, thus 

opening new vistas toward dealing with data complexity using modern techniques. Mohammad and 

Yusof (2020) applied the aggregation method in overcoming the complexity of DEA analyses. This 

effective combination of DEA with multivariate analysis reduces variant features of input/output 

variables, and the resulting outputs are more stable and efficient. With this hybrid approach, the DEA 

model attains a greater degree of flexibility and reliability while performance evaluation is carried 

out. Narasimhan and Ramakrishnan (2019) presented a solution for reducing the high-dimensionality 

problem in the DEA analysis by removing extraneous variables. The findings of this dimension 

reduction demonstrated that it simplified the analysis while improving the accuracy and reliability of 

the DEA results, offering academics and practitioners practical direction in resolving the model's 

complexity. 

Data Envelopment Analysis and variable selection are among the most important methods in 

assessing the performances of organizations and decision-making units. DEA is a nonparametric 

technique that computes the relative efficiency among DMUs working with different configurations 

of inputs and outputs. Flexible analysis enables inefficient units to adopt optimal practices to improve 

their performance. Selection of appropriate variables is important; it provides the relevance and 

preciseness of the DEA model. With the selection of proper variables, we are assured that the factors 

that are influencing efficiency are reflected in the analysis. Irrelevant variables give biased results; 

hence, the validity of the analysis decreases. In addition, variable selection helps in avoiding a 

problem of multicollinearity, which does not give clear implications of the results. Therefore, DEA 

and variable selection are important in performance evaluation. The reason is that DEA aids in 

determining relative efficiency, whereas variable selection guarantees that the evaluation is based on 

the most relevant and significant aspects (Ali & Seiford, 2015; Mardani et al., 2021; Olsen & Karp, 

2019). 

This study proposes a new approach, variable combinations (VCs)-DEA, which reduces the 

number of variables in the DEA analysis by considering 21 variable combinations. Variable selection 

is done irrespective of their order. There are two major factors involved in this model: a reduction in 

variables factor that would increase the focus towards influential variables and an averaging 

calculation factor that creates representative efficiency scores. It also compares this with the original 

DEA method, which does not reduce variables, hence filling the gap in the existing methodologies 

by offering a systematic approach aimed at improving the accuracy of efficiency results. 

The objective of this study is to suggest a variable combination method for subtracting the 

number of variables that will be utilized in implementing the DEA method. We applied 21 variable 

combinations (VCs). A combination is a mathematical model that specifies the number of proper 

regulations in an aggregation of variables in which the sequence of the selection does not matter. The 

idea of combinations is very helpful in determining the number of subsets that can be constructed 

through a finite variable set. In the combination concept, we will be able to choose the variable 

subsets in whatever order. Furthermore, we will use the average efficiency score to get the optimal 

solution. The proposed method (VCs-DEA) treats the variable reduction factor and the average 
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calculation factor to obtain the final result of the efficiency value. These two factors cause the 

strength of the efficiency value to be more accurate. We compare our proposed method with two 

existing methods (without and with variable reduction). The existing method, the original DEA, did 

not utilize variable reduction as (Anouze and Hamad, 2019) had done. Another existing method with 

variable reduction, the analysis of PCA-DEA, or principal component analysis, was independently 

expanded by Ueda and Hoshiai (1997) and Adler and Golany (2001). 

This research contribution of the proposed method of variable selection research in DEA is as 

follows: (i) The variable selection approach can improve the measurement of efficiency for the 

concerned unit by selecting only relevant variables to be considered in the analysis; (ii) Dimensionality 

Reduction: variable selection has the effect of reducing the number of inputs and outputs that would 

have been used in the DEA analysis, thus facilitating interpretation and diminishing model 

complexity; (iii) Relevant Variable Screening: By this study, it will be possible to find out those 

variables that most contribute to efficiency and performance, therefore giving more transparent insight 

for decision makers in managing the analyzed unit; (iv) DEA Model Customization: Using the 

variable selection method will help in customizing the DEA model to suit the unit under analysis much 

better for relevance and applicability of the model; (v) Better Model Validity: Appropriate variable 

selection can improve validity in results of analysis and give more confidence to stakeholders that the 

findings can be relied upon; (vi) Policy Development: The result of this research work will offer useful 

information for developing policies and strategies to improve efficiency in the organization or sector 

where the study applies; (vii) New Knowledge in DEA: This research could generate new knowledge 

in the DEA methodology, especially in the domain of variable selection techniques that may not have 

been as widely discussed so far, thus opening an avenue for further research in this area; and (viii) 

Efficiency Analysis Best Practice: Such best practice in applying DEA integrated with variable 

selection theory will give guidelines for future researchers and practitioners. Therefore, for such 

contributions, the research on methods of variable selection in DEA is bound to have positive 

implications in both academic and practical contexts. 

2. Methods  

2.1. Performance Evaluation 

The capacity of a company to assess business performance is a prerequisite for growth and 

development. Performance evaluations aim to do two things: (i) evaluate an organization's current 

internal operations; and (ii) compare an organization's performance to industry norms and best 

practices. Because of this, a company will be in a better position to: (i) assess its benefits and 

drawbacks; (ii) better organize its operations to meet the demands and desires of clients; and (iii) 

recognize business possibilities to develop new products, services, and processes that will enhance 

operations and activities (Putri et al., 2017). 

Two popular strategies for simultaneous advancements in methodology are benchmarking and 

performance evaluation. The methods employed must be especially important if there are no 

established norms or criteria for the estimation. Verifying the ratio between decision-making units 

(DMUs) is the main purpose of benchmarking. DMUs include organizations such as enterprises, 

associations, projects, corporations, etc. Providing information for business decision-making is the 

aim of performance measurement while continually monitoring the economy and efficiency of the 

business's operations. Performance evaluation is a commonly employed technique to enhance 

organizational procedures. If criteria or benchmarks are not provided for evaluation, this approach 

becomes crucial (Putri & Kusoncum, 2020). 

The fruitfulness of an organization relies on a majority of elements, in which performance 

evaluation is a principal significant to confirm the output realized. Performance evaluation is the 

manner of specifying the efficiency activity in the companies (Boland, et. al., 2017). The popular-

used methods for performance evaluation, such as cost-benefit analysis, regression analysis, ratio 

analysis, AHP (analytic hierarchy process), fuzzy comprehensive evaluation, the Delphi method, 
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BSC (balanced scorecard), MCDM (multiple-criteria decision making), and data envelopment 

analysis (DEA). The usefulness in input-output indicates an inconsiderable connection, conducting 

to complexity in appraising the company performance. DEA can define qualitative problems through 

quantitative analysis, convert subjective decisions into objective decisions, and extend unbiased 

weighting or judgments for aggregation. This is different from the other methods discussed above, 

which require a subjective assessment of indicator weights and create dimensionless data (Cooper 

et. al., 2004). Moreover, DEA is a convenient and useful multi-criteria evaluation method that is 

applied in various groups (Olesen and Petersen, 2016). Government ministries, transportation 

schemes, training institutions, and others, often apply DEA in evaluating the performance of 

institutions or units (Shao et al, 2021). 

2.2. Input-Oriented VRS DEA Envelopment Method 

Data Envelopment Analysis (DEA) is a linear programming technique. This method is applied 

to measure performance in an integrated model. In certain performance evaluations, input and output 

parameters are employed. Inputs are among the factors that must be minimized. Inputs include things 

like labor, materials, costs, and other things. The outputs are one aspect that needs optimization. 

Some examples of outputs include profit and sales. Inputs and outputs undergo categorization before 

the DEA is implemented. In the estimate, each entity, procedure, and business activity is 

demonstrated by DEA applying decision-making units (DMUs). There are two different ways that 

inefficient DMUs are pushed to the periphery of the efficient DMU criteria. There are two main 

approaches to this criterion, either output- or input-oriented: (i) steps that decrease input to maximize 

output at current levels; and (ii) steps that increase output to minimize input to maximize output at 

current levels (Putri et al., 2023). 

 Min θ 

subjected to 
(1)

 

 
∑  𝜆𝑗 𝑋𝑖𝑗  ≤   𝜃 𝑋𝑖𝑗𝑜 ;  Ɐ𝑖 

n

j=1

 (2)                                  

 
∑  𝜆𝑗 𝑌𝑖𝑗  ≤   𝜃 𝑌𝑟𝑗𝑜 ;  Ɐ𝑟 

n

j=1

 (3) 

 
∑ λj = 1 

n

j=1

 (4) 

 𝜆𝑗  ≥   0 ;    Ɐ𝑗, 𝜃 𝑓𝑟𝑒𝑒  

Constant returns to scale (CRS) is the first concept examined by the DEA model. This concept 

aims to avoid the possibility that distinct DMUs operate at various scales. The VRS (variable returns-

to-scale) idea was developed by Banker et al. (1984). In order to overcome this shortcoming, the 

model was created with the requirement that a DMU can only be associated with other DMUs with 

identical dimensions. Presume there are n DMUs (𝑎𝑗 =  1, . . . , 𝑛) that utilize m inputs (𝑥𝑖𝑗, 𝑖 =
 1, . . . , 𝑚) and produce s outputs (𝑦𝑟𝑗, 𝑗 =  1, . . . , 𝑠) in order to introduce the VRS-DEA model. DMU 

j0's technical efficiency is evaluated by DEA in connection with n peer groups of input and output 

DMUs. Equations (1) through (4) use the DEA formalization to assess DMU j0 based on VRS, where 

the efficiency of DMU 𝑗0 is equal to the optimal value of u. This concept is considered to be input-

oriented (Anouze and Hamad, 2019). Explanation of DEA symbols presented in Table 1 (Putri et al., 

2024). 
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Table 1.  Explanation of DEA symbols 

Variable Explanation Variable Explanation 

DMUj 
DMUs are decision-making units (j = 1, …., 

n) 
𝑠 Total number of outputs 

X2 Number of quarrying workers (persons) DMUo One of the n DMUs under consideration 

X3 
Compensation of quarrying establishment 

workers (million rupiahs) 
𝑋𝑖0 DMUo's ith input (i = 1,..., m) 

Y1 
Volume of production of quarrying 

establishment (m3) 
𝑌𝑟0 DMUo's rth input (r = 1,..., s) 

n Number of DMUs 𝜆𝑗 
Weights not known (j = 1,..., n corresponds 

to the DMU number) 

Xij 
jth DMU with ith input (j = 1, …., n; i = 1, …, 

m) 
𝜃 A decision variable or DEA efficiency score 

m Total number of inputs 𝜃 ∗ Optimal solution or value 

Yrj 
Outputs of the jth DMU (r = 1, …, s; j = 1, 

…., n) 
  

 

2.3. Combinations and Subsets 

A mathematical model can be defined as a combination. This model indicates the quantity of 

appropriate rules in a group of items where the selection order poses no issues. In the combination 

concept, it will be able to choose the items in whatever order. Specified a set 𝑆, let 2𝑆 indicate the set 

of all subsets of 𝑆. The 2𝑆 is not a number but a set. For model, 2 {𝑎, 𝑏, 𝑐}  =
 {∅, {𝑎}, {𝑏}, {𝑐}, {𝑎, 𝑏}, {𝑎, 𝑐}, {𝑏, 𝑐}, {𝑎, 𝑏, 𝑐}}  (Sagan, 2020). The common formulation for the 

combinations number of n items utilized r in a period is present in Equation (5). 

 
(

𝑛
𝑟

)
.

=
(𝑛)𝑟

𝑟!
=

𝑛!

(𝑛 − 𝑟)! 𝑟!
 (5) 

The number of subsets that can be created using a finite set A may be found quite easily with 

the use of combinations. It should be considered that altering the sequence set item reserves does not 

produce distinct sets when calculating the number of subsets; for instance, the sets {a, b, e} and {e, 

a, b} consist of the same set of letters. 

The number of unique subsets found by collecting none at all (sets of zero) plus the number of 

distinct subsets found by collecting one item, two items, and so on together reflect the total number 

of subsets of a set A containing n items. Lastly, gathering all n items (set A itself) yields the number 

of distinct subsets. The total number of distinct subsets of A is expressed as shown in Equation (6) 

(Springer, 2022). 

 
∑.

𝑛

𝑟=0

(
𝑛
𝑟

)

.

= ∑.

𝑛

𝑟=0

𝑛!

(𝑛 − 𝑟)! 𝑟!
 (6) 

 

2.4. Research Methodology  

The techniques that this study uses to solve the problem include steps 1 (research design and 

definition), 2 (preparation, data collection, and assessment), 3 (data processing), 4 (result analysis), 

and 5 (conclusion). Phases involved in data collection, evaluation, and preparation include: (i) 

classifying data for Indonesian quarrying (IQ) input and output; (ii) assigning IQ’s input, output, and 

decision-making unit (DMU) data; (iii) assigning constraint data; and (iv) assigning efficiency results 

based on DMUs. Results analysis consists of: (i) efficiency score results; (ii) efficient and inefficient 

DMUs; (iii) comparison between existing and proposed methods; and (iv) DMU classification. Fig. 1 

displays the research method's flowchart. 
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Fig. 1. Flowchart of Research Method 

The basic idea of applying mathematical combinations in variable selection within DEA involves 

exploring possible subsets of input and output variables in finding the combination that maximizes 

the results of the efficiency analysis. The following are the steps involved in DEA variable selection 

using mathematical combinations and subsets: 

1. List of input and output variables: A list of input and output variables is required in the DEA 

model. The study implemented 3 inputs, such as number of quarrying establishments, number of 

quarrying workers, compensation of quarrying establishment workers, and 2 outputs, such as 

volume of production of quarrying establishments and production value of quarrying 

establishments. The input variables comprise X1, X2, and X3. The output variables comprise Y1 

and Y2. 

2. Combinations Formation: The use of combinations can form several subsets of input and output 

variables. Combinations allow different subsets to be selected without regard for the order of 

selection. For n input or output variables, the total number of combinations that might be formed 

from r variables is given by Equation (5). This study applied the combination number of n = 5 

variables (X1, X2, X3, Y1, Y2) and utilized r = 3 in a period (2, 3, and 4). There are ten subsets 

created by using r = 2 and r = 3, respectively. There are five subsets when r = 4. The subsets are 

then utilized to run DEA. DEA uses input and output variables (mix variables) in its 

Steps 1: Research Design and Definition 

Step 2: Preparation, Data Collection, and Assessment   

(i) Classifying data for Indonesian quarrying (IQ) input and output;  

(ii) Assign IQ’s input, output, and DMU (decision-making unit) data. These 

consist of three inputs (X1, X2, X3), two outputs (Y1, Y2), and twelve DMUs 

(S, SA, G, LS, Q, M, C, So, F, Gr, K, dan O). 

(iii) Assign constraint data. There are 6 constraints (Input-X1, Input-X2, Input-X3, 

Output-Y1, Output-Y2, ∑λ). 

(iv) Assign efficiency results based on DMUs. 

 

Step 3: Data Processing  

(i) Specify number of subsets and type of subsets. This study applied the 

combinations number of n = 5 variables (X1, X2, X3, Y1, Y2) and utilized r 

= 3 in a period (2, 3, and 4). 

(ii) Specify 21 types of variable combination (VCs). These VCs applied for 

establishing efficiency score. 

(iii) VCs-VRS DEA Spreadsheet Model. Utilizing the solver's feature to provide 

efficiency scores, the input-output data were organized in an MS Excel 

spreadsheet. 

 

 

Step 4: Results Analysis  

(i) Efficiency Score Results.  

(ii) Efficient and Inefficient DMUs.  

(iii) Comparison between Existing and Proposed Method. 

(iv) DMUs Classification. 

 

 

Step 5: Conclusion 
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implementation. Therefore, the selected subsets are those that have both variables (heterogeneous 

subsets). Homogeneous subsets will not be used in this study. In total, 25 subsets have been 

created in this research. It consists of 21 heterogeneous subsets and 4 homogenous subsets. 

3. Each of these variable combinations is tested in the DEA model to find out the change in 

efficiency when different variables are in use. This allows for finding the most suitable 

input/output combination when any relative efficiency has to be evaluated for the DMU under 

consideration. 

4. Sensitivity Analysis: Sensitivity analysis can be made by evaluating various combinations to find 

which ones most affect the results of DEA and which ones are not that important. 

Fig. 2 presents the steps in DEA variable selection using mathematical combinations and subsets. 

 

 

 

 

 

 

 
Fig. 2. Steps in DEA Variable Selection using Mathematical Combinations and Subsets 

 

2.5. DEA Variable Selection Criteria Based on Combinations and Subsets in Mathematical 

Models  

DEA can be performed with the use of input and output variables. DEA is a non-parametric 

method originally used to assess the relative efficiency of DMUs with multiple inputs and outputs. 

Inputs denote the resources consumed by the DMU, and outputs are the outcome of the utilization of 

the same resources. DEA assesses how well the DMU generates outputs from its inputs. According to 

combinations and subsets in the mathematical model, there are two kinds of variables: one based on 

heterogeneous subsets and another from homogeneous subsets. Heterogeneous Subset-Based 

Variables: The chosen variables are of heterogeneous subsets, where the input and output variables 

are selected from a group of data that vary in character or form. The heterogeneous subsets allow for 

capturing greater variation among DMUs, thus even more comprehensively and accurately enabling 

an analysis to determine relative efficiency between DMUs. Variable Reduction in Homogenous 

Subset: A homogeneous subset is a group of variables that represent very similar or identical 

properties or characteristics. Variables in DEA that are homogeneous—there are no significant 

variations between DMUs—do not provide much information in the efficiency analysis since they are 

not helpful enough to distinguish the performance between DMUs. Because of this, variables that are 

too homogeneous are usually removed or not used since their contribution to the efficiency analysis 

is low. As a result, input-output variables that differ (heterogeneous) give more informative results in 

DEA. Conversely, those variables that are uniform (homogeneous) are not utilized because they might 

be incapable of distinguishing efficiency between the units under consideration (Chen & Delmas, 

2022; Khezrimotlagh et. al., 2019; Liu et. al., 2016). 

Steps 1: List of input and output variables. 

Steps 2: Combination’s formation to create various subsets of 

input and output variables. 

Steps 3: Tested variable combinations in the DEA model to find 

out the change in efficiency when different variables are in use. 

Steps 4: Sensitivity analysis to evaluate various 

combinations. 
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3. Results and Discussion 

3.1. Input and Output Data of Quarrying Establishment  

The proposed method (the average VCs-VRS DEA envelopment method) can simply be 

performed by applying a case study. We consider the quarrying establishment data, which consists 

of three inputs and two outputs, as shown in Table 2. There are 12 kinds of materials and their DMU 

(decision-making units), as shown in Table 3. The input and output data of quarrying establishments 

by kind of materials in 2020 are shown in Table 4. 

Table 2.  Input and output variables for quarrying establishments 

Data Variable Explanation 

Input X1 Number of quarrying establishments (units) 

X2 Number of quarrying workers (persons) 

X3 Compensation of quarrying establishment workers (million rupiahs) 

Output Y1 Volume of production of quarrying establishment (m3) 

Y2 Production value of quarrying establishment (million rupiahs) 

Table 3.  Kind of materials and DMUs 

DMUs Kind of Materials DMUs Kind of Materials 

S Sand  C Clay   

SA Stone and Andesite  So Soil  

G Gravel  F Feldspars  

LS Lime-Stone  Gr Granite  

Q Quartz  K Kaolin  

M Marble  O Others   

Table 4.  Input and output data of quarrying establishment 

DMUs Kind of Materials X1 X2 X3 Y1 Y2 

S Sand 60,759 152,682 1,245,282 67,437,616 4,954,429 

SA Stone and Andesite 33,426 87,465 888,574 37,934,605 3,912,987 

G Gravel 5,914 18,390 243,810 14,802,482 1,056,362 

LS Lime-Stone 2,424 9,999 217,070 9,718,944 1,040,036 

Q Quartz 47 894 27,045 1,875,610 165,769 

M Marble 668 3,339 72,477 187,793 335,564 

C Clay 342 3,429 75,596 3,555,291 215,826 

So Soil 930 2,284 46,214 3,133,320 203,733 

F Feldspars 8 316 7,576 110,526 24,669 

Gr Granite 97 1,590 155,602 3,557,268 800,333 

K Kaolin 10 456 18,400 629,247 72,956 

O Others 8,599 39,033 225,297 2,876,868 652,151 

 

3.2. Number and Type of Subsets  

The number of combinations is based on 5 variables (X1, X2, X3, Y1, Y2) by taking 3 kinds of r 

(2, 3, and 4) as shown in Table 5. This study applied the combination number of n = 5 variables (X1, 

X2, X3, Y1, Y2) and utilized r = 3 in a period (2, 3, and 4). There are ten subsets created by using r = 

2 and r = 3, respectively. There are five subsets when r = 4. Table 4 provides explanations for each 

type of subset.  

There are 21 heterogeneous subsets and 4 homogenous subsets*. The homogenous subsets ((X1, 

X2, X3)*; (X1, X2)*; (X1, X3)*; (X2, X3)*; and (Y1, Y2)*) do not represent the mix variables (input and 

output variables) at the same time. Therefore, those subsets will not be used as the variable 

combination for efficiency score calculation. 
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Table 5.  Number and type of subsets 

No. Number of Subsets Type of Subsets 

1. (
5
2

)
.

=
(5)2

2!
=

5!

(5 − 2)! 2!
= 10 

(X1, Y1); (X2, Y1); (X3, Y1); (X1, Y2); (X2, Y2); 

(X3, Y2); (X1, X2)*; (X1, X3)*; (X2, X3)*; (Y1, Y2)* 

2. (
5
3

)
.

=
(5)3

3!
=

5!

(5 − 3)! 3!
= 10 

(X1, X2, Y1); (X1, X3, Y1); (X1, X3, Y1); (X1, X2, Y2); 

(X1, X3, Y2); (X2, X3, Y2); (X1, Y1, Y2); (X2, Y1, Y2); 

(X3, Y1, Y2); (X1, X2, X3)* 

3. (
5
4

)
.

=
(5)4

4!
=

5!

(5 − 4)! 4!
= 5 

(X1, X2, X3, Y1); (X1, X2, X3, Y2); (X1, X2, Y1, Y2); 

(X1, X3, Y1, Y2); (X2, X3, Y1, Y2) 

 

3.3. Types of Variable Combination for Efficiency Score Calculation 

There are 4 types of VCs based on the combination of variables, namely: VCs – 2 variables, VCs 

– 3 variables, VCs – 4 variables, and VCs – 5 variables. Type of VCs – 2 variables consisting of VC-

16, VC-17, VC-18, VC-19, VC-20, and VC-21. Type of VCs – 3 variables consisting of VC-5, VC-6, VC-7, 

VC-9, VC-10, VC-11, VC-13, VC-14, and VC-15. Type of VCs – 4 variables consisting of VC-2, VC-3, VC-

4, VC-8, and VC-12. Type of VCs – 5 variables have only one subset, namely VC-1. The variable 

combinations for each type of VCs are presented in Table 6. 

Table 6.  Types of variable combination (VCs) for efficiency score calculation 

Input-

Output 

Types of Variable Combinations (VCs) 

VC-1 VC-2 VC-3 VC-4 VC-5 VC-6 VC-7 VC-8 VC-9 VC-10 VC-11 

Input 

X1 - X1 X1 X1 - - X1 - X1 X1 

X2 X2 - X2 - X2 - X2 X2 - X2 

X3 X3 X3 - - - X3 X3 X3 X3 - 

Output 
Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 Y1 

Y2 Y2 Y2 Y2 Y2 Y2 Y2 - - - - 

Input-

Output 

Types of Variable Combinations (VCs) 

VC-12 VC-13 VC-14 VC-15 VC-16 VC-17 VC-18 VC-19 VC-20 VC-21  

Input 

X1 - X1 X1 X1 - - X1 - -  

X2 X2 - X2 - X2 - - X2 -  

X3 X3 X3 - - - X3 - - X3  

Output 
- - - - Y1 Y1 Y1 - - -  

Y2 Y2 Y2 Y2 - - - Y2 Y2 Y2  

 

3.4. VCs-VRS DEA Spreadsheet Model 

Utilizing the solver's feature to provide efficiency scores, the input-output data were organized 

in an MS Excel spreadsheet. This idea is based on a linear programming model. There are four (4) 

components in this spreadsheet, such as the cells for (a) decision variables (𝜆 and 𝜃); (b) objective 

function (efficiency, 𝜃); (c) the formulation of reference set (constraints in the right-hand-side); and 

(d) the formulation of efficiency for DMU under evaluation (constraints in the left-hand-sided) (Putri 

et al, 2016). Spreadsheet model of VCs-VRS DEA shown in Table 7. Type of variable combination 1 

(VC-1) consists of 3 input variables (X1, X2, X3) and 2 output variables (Y1, Y2). The result of 

efficiency score is as follows: S (1), SA (1), G (1), LS (1), Q (1), M (0.85), C (1), So (1), F (1), Gr (1), 

K (1), and O (0.56). Spreadsheet model of VC-2 to VC-21-VRS DEA can be done in the same way 

of VC-1. 

3.5. Efficiency Score Results 

The average input variable combination-oriented VRS DEA envelopment method is used in this 

study to determine the efficiency score. The result of efficiency scores based on the types of variable 

combinations (VC-1 to VC-21) and its average as shown in Table 8. 
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Table 7.  VC-1-VRS DEA spreadsheet model 

DMUs X1 X2 X3  Y1 Y2 λ Efficiency 

S 60,759 152,682 1,245,282  67,437,616 4,954,429 0 1 

SA 33,426 87,465 888,574  37,934,605 3,912,987 0 1 

G 5,914 18,390 243,810  14,802,482 1,056,362 0 1 

LS 2,424 9,999 217,070  9,718,944 1,040,036 0 1 

Q 47 894 27,045  1,875,610 165,769 0.73 1 

M 668 3,339 72,477  187,793 335,564 0 0.85 

C 342 3,429 75,596  3,555,291 215,826 0 1 

So 930 2,284 46,214  3,133,320 203,733 0 1 

F 8 316 7,576  110,526 24,669 0 1 

Gr 97 1,590 155,602  3,557,268 800,333 0.27 1 

K 10 456 18,400  629,247 72,956 0 1 

O 8,599 39,033 225,297  2,876,868 652,151 0 0.56 

         

 Reference  DMU under 12 Efficiency    

Constraints set  Evaluation  0.56    

Input-X1  60 < 566      

Input-X2  1,080 < 2,831      

Input-X3  61,444 < 61,444      

Output-Y1  2,325,584 > 187,793      

Output-Y2  335,564 > 335,564      

∑λ 1 = 1      

 

Table 8.  Results of efficiency score 

DMUs 

Efficiency Score (VCs) Average 

Input 

VCs-VRS DEA 
VC-1 VC-2 VC-3 VC-4 VC-5 VC-6 VC-7 VC-8 → VC-20 VC-21 

S 1 1 1 1 1 1 1 1  1 1 1 

SA 1 1 1 1 1 1 1 0.90  1 1 0.96 

G 1 1 1 1 1 1 1 1  0.47 0.89 0.90 

LS 1 1 1 1 1 1 1 1  0.82 0.98 0.98 

Q 1 1 1 1 1 1 1 1  0.61 1 0.94 

M 0.85 0.25 0.85 0.25 0.06 0.25 0.85 0.12  0.25 0.85 0.38 

C 1 0.46 1 0.46 0.28 0.46 0.71 1  0.18 0.49 0.55 

So 1 0.62 1 0.62 0.09 0.62 1 1  0.27 0.75 0.66 

F 1 1 1 1 0.37 1 1 1  1 1 0.97 

Gr 1 1 1 1 1 1 1 1  1 1 0.97 

K 1 1 1 1 1 1 0.77 1  0.87 0.77 0.95 

O 0.56 0.03 0.56 0.03 0.01 0.03 0.56 0.19  0.03 0.56 0.23 

 

3.6. Efficient and Inefficient DMUs 

The average efficiency score of an efficient DMU is 1, but the average efficiency score of an 

inefficient DMU is less than 1. Based on the average input VCs - VRS DEA envelopment method, 

the results of the DMUs are both inefficient and efficient, as seen in Table 9. There are 1 efficient 

DMU out of 12 (8%) and 11 inefficient quarrying DMUs out of 12 (92%). 

Table 9.  Efficient and inefficient DMUs based on Average Input VCs-VRS DEA 

DMUs Average Efficiency Score Remark DMUs Average Efficiency Score Remark 

S 1 Efficient C 0.55 Inefficient 

SA 0.96 Inefficient So 0.66 Inefficient 

G 0.90 Inefficient F 0.97 Inefficient 

LS 0.98 Inefficient Gr 0.97 Inefficient 

Q 0.94 Inefficient K 0.95 Inefficient 

M 0.38 Inefficient O 0.23 Inefficient 
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An efficient DMU manages its inputs and outputs optimally, attaining better technical and 

allocative efficiency compared with other DMUs. It may be able to maximize output with fewer or 

more appropriate use of resources. In addition, differences in scale of operation may also be a factor. 

An efficient DMU may be operating at an optimal scale, while others are operating at too large or too 

small a scale, resulting in inefficiencies. In addition, exogenous factors, such as especially favorable 

market conditions, better access to technology, or regulatory support, may also influence the efficiency 

of a DMU. Other reasons may be internal, such as better management, process innovation, and using 

higher technology, which might be the reason for the efficiency of only one DMU. It may also be 

argued that the inefficient DMUs are victims of inefficiencies due to poor management or inefficient 

use of technology and problems in supply chains, thus worsening their performance. With these 

factors in view, it thus makes sense why only 1 DMU is efficient, while the rest may face various 

internal and external challenges that affect their efficiency. 

Efficiency is a great tool in many industries, as it ascertains the usage of capital, labor, or raw 

material resources in the production of maximum output. Efficiency scores generally measure, within 

an industrial context, the use of an organization or sector in exploiting resources to achieve maximum 

results with minimal input. This score can be determined using the DEA method. DEA compares the 

performances of one entity with other entities within the same sector. Efficiency scores are important 

in the following ways: they pinpoint areas for improvement, indicating less efficient parts of the 

operations and thus helping in improving; they are a competitive marker in that companies with high 

efficiency scores tend to have low costs and large profit margins; they optimize resources and 

increase productivity through optimal use of labor and raw materials; they aid strategic decision-

making for the management on investment decisions and technology development; and they enhance 

sustainability by reducing waste and excess use of resources, hence supporting environmental 

sustainability (Akhmetova & Suleimanova, 2022; Yusoff & Chedid, 1978; Zhu & Zhou, 2021). 

The importance of this research for industry is as follows: (i) The variable selection approach 

can improve the measurement of efficiency for the concerned unit by selecting only relevant variables 

to be considered in the analysis; (ii) Dimensionality Reduction: variable selection has the effect of 

reducing the number of inputs and outputs that would have been used in the DEA analysis, thus 

facilitating interpretation and diminishing model complexity; (iii) Relevant Variable Screening: By 

this study, it will be possible to find out those variables that most contribute to efficiency and 

performance, therefore giving more transparent insight for decision makers in managing the analyzed 

unit; (iv) DEA Model Customization: Using the variable selection method will help in customizing 

the DEA model to suit the unit under analysis much better for relevance and applicability of the model; 

(v) Better Model Validity: Appropriate variable selection can improve validity in results of analysis 

and give more confidence to stakeholders that the findings can be relied upon; (vi) Policy 

Development: The result of this research work will offer useful information for developing policies 

and strategies to improve efficiency in the organization or sector where the study applies; (vii) New 

Knowledge in DEA: This research could generate new knowledge in the DEA methodology, 

especially in the domain of variable selection techniques that may not have been as widely discussed 

so far, thus opening an avenue for further research in this area; and (viii) Efficiency Analysis Best 

Practice: Such best practice in applying DEA integrated with variable selection theory will give 

guidelines for future researchers and practitioners (Bai  & Sarkis, 2017; Emrouznejad & Yang, 2018; 

Wang & Wu, 2017). 

The 92% inefficiency means that most of the resources utilized by the mining firms are not well 

utilized. These resources include labor, energy, and capital. Negative impacts brought to companies 

as a result of these inefficiencies include reduced profitability and increased operational costs 

because inefficient production consumes more time and resources. Additionally, inefficiency makes 

companies lose their competitiveness, more so if compared to other companies operating at higher 

efficiency levels. This will badly affect the company's position in the global market as its capacity to 

compete at prices would go down.Such inefficiency at the industry level can also translate into 

commodity price volatility. The aggregate production costs rise when numerous mining companies 
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are inefficient, thus probably having an impact on raw material prices. This, in turn, has an effect on 

the supply chain, as the companies that make use of the raw materials may face delays in delivery or 

have to pay a higher price for the raw materials. Secondly, the effect on the environment is also 

greater because inefficient usage of resources frequently speeds up the exploitation of natural 

resources, results in higher levels of greenhouse gas emissions, and causes environmental 

degradation. This inefficiency problem calls for various stakeholders to act. Company management 

may undertake more sophisticated technologies like automation and digital sensors, which can 

monitor operational efficiency in real time. They can also take regular audits to identify the points 

that need rectification. It is also very possible to include mechanisms for incentives to the government 

for those companies that increase efficiency or apply "green" technologies, with simultaneous 

stringent regulation that allows more efficient energy use. Investors themselves may contribute by 

ensuring the control of the companies' activities for efficiency and sustainability and by facilitating 

the adoption of ESG standards. Communities and non-governmental organizations can also join in 

the awareness campaigns to ensure better and more environmentally friendly mining practices. The 

companies may adopt a concrete step to utilize the benchmarking methods against other more 

efficient mining companies and adopt lean management in order to minimize production waste. 

Besides, companies can consider the use of renewable energy sources like solar or wind to reduce 

dependence on expensive and environmentally unfriendly fossil fuels. The positive consequences 

would be that if these steps are taken, it would allow mining companies to increase their efficiency, 

lower costs of production, and enhance their competitiveness in the global market with minimal 

negative impacts on the environment and surrounding communities. 

3.7. Comparison between Existing and Proposed Methods  

Our proposed method refers to the analysis conducted by Madhanagopal and Chandrasekaran 

(2014). DEA applies multiples of input and output variables for analyzing efficiency but does not 

provide guidance in selecting those variables. As a rule, researchers use several methods. Based on 

this analysis, our proposed method applied variable reduction using the variable combination (VCs) 

method. VCs is a method to subtract the number of variables that will be utilized in implementing 

the DEA method. A combination is a mathematical model that specifies the number of proper 

regulations in an aggregation of variables in which the sequence of the selection does not matter. In 

the combination concept, we will be able to choose the variable subsets in whatever order. 

Furthermore, we will use the average efficiency score to get the optimal solution. By applying the 

average, the results of efficiency will be more accurate. Some of the underlying things are: (a) the 

average is the central value for the data; (b) the average is referred to by the value of each point in 

the sequences. Hence, the average can be mentioned to actually reflect the central tendency of the 

data, and (c) the average is reliable in the sense that it does not differ too much when the repeated 

sample is taken from a large population for approximation purposes. 

Data Envelopment Analysis (DEA) is a non-parametric method applied for the estimation of the 

relative efficiency of decision units (DMUs) within a multivariate analysis context. Since DEA does 

not rely on any specific assumptions concerning data distribution, in contrast to parametric methods, 

there are no requirements regarding formal statistical tests, such as t-tests or ANOVA, in the context 

of the results from using DEA. However, even though DEA does not require statistical tests by itself, 

there are considerations to be validated: results validation, sensitivity of the analysis, confidence 

intervals, and comparison to other methods. Thus, even though DEA in itself does not require 

statistical tests, additional approaches can be used to enhance the analyses and give better context for 

the results obtained (Banker et al., 1984;  Charnes et al., 1978). 

This research compares the proposed method (VCs-DEA) with two existing methods. The 

existing method, the original DEA, did not utilize variable reduction as Anouze and Hamad (2019) 

had done. Another existing method with variable reduction, the analysis of principal component 

analysis (PCA)-DEA, was separately extended by Ueda and Hoshiai (1997) and Adler and Golany 

(2001). Table 10 presents the efficiency scores of the existing (Original DEA and PCA-DEA) and 

proposed methods (VCs-DEA). Efficient DMUs have an efficiency score of 1, while inefficient 
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DMUs have an efficiency score of less than 1. Based on the value of the efficiency score (ES), it can 

be determined the number of efficient DMU, the number of inefficient DMU, efficient DMU (%), 

and inefficient DMU (%). VCs-DEA has (i) the smallest number of efficient DMUs and percentage 

of efficient DMUs (1 and 8%, respectively); and (ii) the largest number of inefficient DMUs and 

percentage of inefficient DMUs (11 and 92%, respectively). Original DEA has (i) the largest number 

of efficient DMUs and percentage of efficient DMUs (10 and 83%, respectively); and (ii) the smallest 

number of inefficient DMUs and percentage of inefficient DMUs (2 and 17%, respectively). PCA-

DEA has an intermediate value between VCs-DEA and Original DEA, namely the number of 

efficient DMUs (3), percentage of efficient DMUs (25), number of inefficient DMUs (9), and 

percentage of inefficient DMUs (75%). Fig. 3 presents the distribution of efficiency scores (ES) of 

existing (Original DEA and PCA-DEA) and proposed methods (VCs-DEA). Original DEA tends to 

have DMUs with ES values equal to 1. Both PCA-DEA and VCs-DEA have DMUs with fluctuating 

ES distributions. However, PCA-DEA has a lower fluctuating ES distribution than VCs-DEA. 

Table 10.  Efficiency score of existing and proposed methods 

DMUs 
Existing Method Proposed Method 

Original DEA PCA-DEA VCs-DEA 

S 1 0.20 1 

SA 1 0.19 0.96 

G 1 0.36 0.90 

LS 1 0.43 0.98 

Q 1 1 0.94 

M 0.85 0.20 0.38 

C 1 0.46 0.55 

So 1 0.61 0.66 

F 1 0.37 0.97 

Gr 1 1 0.97 

K 1 1 0.95 

O 0.56 0.03 0.23 

Number of Efficient DMU 10 3 1 

Number of Inefficient DMU 2 9 11 

Efficient DMU (%) 83 25 8 

Inefficient DMU (%) 17 75 92 

 

 

Fig. 3. Efficiency score of existing and proposed methods 

The result of the original DEA indicates that there are 10 efficient DMUs out of 12 (83%) and 

2 inefficient DMUs out of 12 (17%). The original DEA does not treat variable reduction. This affects 

X = DMUs 
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the power efficiency results, which causes the number of efficient DMUs to be very large (83%). 

The result of PCA-DEA indicates that there are 3 efficient DMUs out of 12 (25%) and 9 inefficient 

DMUs out of 12 (75%). The PCA-DEA applied variable reduction. Therefore, the result of PCA-

DEA is more accurate than the original DEA. 

The result of VCs-DEA indicates that there is 1 efficient DMU out of 12 (8%) and 11 inefficient 

quarrying DMUs out of 12 (92%). The VCs-DEA treats the variable reduction factor and the average 

calculation factor to obtain the final result of the efficiency value. These two factors cause the 

strength of the efficiency value to be more accurate. These two factors contribute to the accuracy of 

the efficiency value. Hence, this method is unique or superior. This can be seen in the number of 

efficient DMUs, which is only 8%. The original DEA has the highest number of efficient DMUs 

(83%), and PCA-DEA has the highest number of efficient DMUs (25%). The VCs-DEA provides a 

more accurate efficiency value than the original DEA and PCA-DEA. Therefore, the proposed 

method is better than the existing method to evaluate the performance of Indonesian quarrying. 

Average Input Variable Combinations (VCs)-DEA is more accurate because of its intelligent 

approach in reducing the input variables without losing the important information. Essentially, VCs-

DEA works by taking an average combination of various input variables, which actually simplifies 

the model but still retains the essence of each input. This step reduces the complexity of the analysis 

and stabilizes the results since the combination of variables reduces the sensitivity of the model 

towards unstable variables or outliers. The reduction of the number of variables is carried out with 

due care to ensure that any loss of information remains as minimal as possible; hence, the efficiency 

assessment outcome remains accurate. On the contrary, the PCA-DEA method tries to reduce input 

variables using a statistical approach. While effective in reducing the number of input variables used, 

this approach, in which PCA selects the number of principal components of input variables to explain 

most of the variation in data, poses a risk of losing important information that may not be captured 

by the principal components. For example, when principal components explain only a part of the 

variation in data, other less important components may also carry information that can be relevant in 

efficiency assessment. Thus, though PCA-DEA reduces problems of dimensionality and 

multicollinearity, there is a potential loss of detail, which can reduce accuracy in the final results. 

Meanwhile, Original DEA does not use any variable reduction techniques and analyzes all available 

input variables directly. That sounds simple, but the use of too much input can create certain 

problems—for example, the "curse of dimensionality." If the number of input variables is too large, 

then the DEA model may turn out to be highly sensitive to small changes in the dataset, which can 

again result in incorrect efficiency evaluations. Another important point is the fact that great 

correlation between input variables may lead to problems of multicollinearity, where the model 

cannot tell how much each variable contributes, and, with respect to that, it makes results unstable 

and less reliable. One of the major strengths of VCs-DEA is that it can at least partially transcend 

these problems through the aggregation process. The information redundancy could be reduced and 

balance the influential strength of each variable in efficiency assessment by aggregating correlated 

input variables. Let's say, for instance, a firm's efficiency analysis involves up to so many inputs, 

such as the number of workers, capital, and raw materials. VCs-DEA can combine highly correlated 

variables into one combination variable, thereby reducing the risk of distortion due to the usage of 

excessive variables. Variable reduction plays a significant role in striking an optimal balance between 

the model's complexity and precision. If the number of input variables is large, then a model can run 

into unsteadiness and a loss of interpretability. By variance reduction, on the other hand, with 

methods such as VC-DEA, we ensure higher accuracy and stability of the model by trying to 

minimize the influence of irrelevant or redundant variables. However, in respect to complex 

efficiency analysis, VCs-DEA outperforms others because it can make a trade-off between model 

simplification and retaining important information; hence, it could be more accurate and stable than 

PCA-DEA and Original DEA (García-Sánchez et al., 2019; Cooper et al., 2004; Tavana et al., 2020). 

The comparative analysis between methods (VCs-DEA (Average Input Variable Combinations 

DEA), PCA-DEA (Principal Component Analysis DEA), and Original DEA): VCs-DEA, PCA-

DEA, and Original DEA can then indicate a deeper understanding of the operational efficiencies of 
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quarrying companies in Indonesia with different but complementary approaches. The VCs-DEA 

averages these input variables, which are usually fluctuating—for example, fuel usage or daily 

productivity affected by weather or technical conditions—to get more stable analysis results. This is 

very relevant for quarrying companies because the fluctuations of these variables often make the 

efficiency analysis difficult by just using unstable raw data. Meanwhile, the PCA-DEA method 

supports an easy analysis by reducing the data dimension, putting attention only on the variables 

having the most significant effect on the efficiency. PCA-DEA helps companies to focus more on 

the main factors of influence in such complex quarrying operations because many variables, such as 

equipment life, production capacity, energy consumption, and labor costs, come into play. For 

example, if PCA-DEA identifies heavy capacity equipment and operational age as two of the most 

crucial factors in determining efficiency for a quarry, then management can become more focused 

on allocating resources or investments to improve the performance of such tools. On the other hand, 

Original DEA uses all the input and output variables without simplification, thus allowing the 

companies to get a full picture of the operational efficiency. This will be less effective, however, if 

there are a lot of irrelevant or collinear variables that actually mask the results of the analysis. Even 

then, for quarry wanting to see efficiency holistically—from energy consumption and equipment 

productivity to environmental factors—Original DEA is still useful to get a comprehensive 

assessment. Comparing these three methods will enable quarrying companies to identify, more 

precisely, points of inefficiency and design more focused strategies towards optimization of resource 

use in such a way that the operational efficiency is more effective and that management decisions 

are based on more in-depth analysis relevant to the company's real situation (Cooper et al., 2007; 

Emrouznejad & Yang, 2018; Nalbantian & Toroslu, 2015). 

The major uniqueness of the comparative analysis between the VCs-DEA, PCA-DEA, and 

Original DEA methods is that these three methods introduce different dimensions in measuring the 

operational efficiency of quarrying companies. VCs-DEA provides more stable and consistent results 

than conventional methods when raw data are used. PCA-DEA helps the company in strategic 

resource allocation by paying more attention to the most influential variables. Original DEA may 

view all the important aspects related to mining operations—from energy consumption to 

environmental impacts—in a holistic manner. Therefore, one of the unforeseen findings/novelties of 

this analysis is its flexibility in providing options of methods that may be fitted to specific needs in 

mining companies. In this way, companies will be able to choose the most appropriate one, depending 

on data stability or focusing on key variables, whether or not they have the need to obtain a holistic 

view. In this respect, the contribution of the present study is novel in the literature on operational 

efficiency in the mining sector because firms will be able to make more targeted decisions based on 

the most relevant analysis method compared to real conditions in the field. 

3.8. DMUs Classification  

Fig. 4 presents the distribution of DMU average efficiency scores (AES) based on VCs-DEA. 

The best DMU is S (AES = 1). The least efficient DMU is O (AES = 0.23). Seven DMUs have an 

average efficiency score in the range of 0.9, namely: LS (AES = 0.98), F (AES = 0.97), Gr (AES = 

0.97), SA (AES = 0.96), K (AES = 0.95), Q (AES = 0.94), and G (AES = 0.9). Three DMUs have 

efficiency values in the range of 0.66–0.38, namely: So (AES = 0.66), C (AES = 0.55), and M (AES 

= 0.38).  

Based on the distribution of DMU average efficiency scores (AES) in Fig. 4, the Indonesia 

quarrying establishment can be classified into 3 categories, as shown in Table 11. The optimal 

category (AESR = 0.99 - 1) has a percentage of the DMUs number of 8% (1/12x100%). The other 

two categories are the middle category (AESR = 0.70–0.98) and the less category (AESR = 0.20–

0.69), which have a percentage of the DMUs number of 58% (7/12x100%) and 33% (4/12x100%), 

respectively.  

Fig. 5 presents a comparison of DMU classification based on average efficiency score range 

(AESR) and percentage (%). The optimal category (AESR = 0.99 - 1) has a percentage of 8%. The 
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medium category (AESR = 0.70–0.98) and low (AESR = 0.20–0.69) have percentages of 58% and 

33%, respectively. 

 

Fig. 4. DMU Average Efficiency Score Based on VCs-DEA 

Table 11.  DMUs classification 

Category Average Efficiency 

Score Range (AESR) 

DMU Kind of Materials Average Efficiency 

Score (AES) 

Percentage (%) 

Optimal  0.99 - 1 S Sand 1 8 

Medium 0.70 - 0.98 LS Lime-Stone  0.976 58 

  F Feldspars  0.970  

  Gr Granite  0.969  

  SA Stone and   0.959  

   Andesite   

  K Kaolin  0.954  

  Q Quartz  0.937  

  G Gravel  0.901  

Low 0.20 - 0.69 So Soil  0.659 33 

  C Clay   0.548  

  M Marble  0.380  

  O Others   0.234  

 

 

Fig. 5. DMU Classification Comparison Based on AESR and Percentage (%) 
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Fig. 6 presents the classification of DMUs in terms of AESR, DMU type, and efficiency score 

(ES). The optimal category (AESR = 0.99 - 1) only has 1 DMU, namely S (ES = 1). The medium 

category (AESR = 0.70–0.98) consists of 7 DMUs, namely: LS (ES = 0.976), F (ES = 0.970), Gr (ES 

= 0.969), SA (ES = 0.959), K (ES = 0.954), Q (ES = 0.937), and G (ES = 0.901). The low category 

(AESR = 0.20–0.69) consists of 4 DMUs, namely: So (ES = 0.659), C (ES = 0.548), M (ES = 0.380), 

and O (ES = 0.234).  

 

 

Fig. 6. DMU Classification Comparison Based on AESR, DMU Types, and Efficiency Scores 

The comparative analysis between methods (VCs-DEA (Average Input Variable Combinations 

DEA), PCA-DEA (Principal Component Analysis DEA), and Original DEA) is described as the 

following: VCs-DEA, PCA-DEA, and Original DEA can then indicate a deeper understanding of the 

operational efficiencies of quarrying companies in Indonesia with different but complementary 

approaches. The VCs-DEA averages these input variables, which are usually fluctuating—for 

example, fuel usage or daily productivity affected by weather or technical conditions—to get more 

stable analysis results. This is very relevant for quarrying companies because the fluctuations of these 

variables often make the efficiency analysis difficult by just using unstable raw data. Meanwhile, the 

PCA-DEA method supports an easy analysis by reducing the data dimension, putting attention only 

on the variables having the most significant effect on the efficiency. PCA-DEA helps companies to 

focus more on the main factors of influence in such complex quarrying operations because many 

variables, such as equipment life, production capacity, energy consumption, and labor costs, come 

into play. For example, if PCA-DEA identifies heavy capacity equipment and operational age as two 

of the most crucial factors in determining efficiency for a quarry, then management can become more 

focused on allocating resources or investments to improve the performance of such tools. On the other 

hand, Original DEA uses all the input and output variables without simplification, thus allowing the 

companies to get a full picture of the operational efficiency. This will be less effective, however, if 

there are a lot of irrelevant or collinear variables that actually mask the results of the analysis. Even 

then, for quarry wanting to see efficiency holistically—from energy consumption and equipment 

productivity to environmental factors—Original DEA is still useful to get a comprehensive 

assessment. Comparing these three methods will enable quarrying companies to identify, more 

precisely, points of inefficiency and design more focused strategies towards optimization of resource 

use in such a way that the operational efficiency is more effective and that management decisions are 

based on more in-depth analysis relevant to the company's real situation (Brodie & Hsu, 2018; García-

Sánchez et al., 2019; Sullivan & Mounsey, 2010). 



108 
Spektrum Industri 

ISSN 1693-6590 
Vol. 22, No. 2, 2024, pp. 90-110 

 

 

Erni Puspanantasari Putri (Efficiency Evaluation in Indonesia's Quarrying Industry Using Variable Combinations 

DEA) 

 

4. Conclusion 

The study evaluates the efficiency of Indonesian quarrying operations using three methods: 

VCs-DEA, PCA-DEA, and Original DEA. Among these, VCs-DEA is identified as the most 

accurate, classifying 8% of Decision-Making Units (DMUs) as efficient due to its unique approach 

of variable reduction and averaging, which stabilizes fluctuating inputs. PCA-DEA offers 

simplification by focusing on key variables, aiding resource allocation and planning, while Original 

DEA provides comprehensive evaluations but struggles with irrelevant or collinear data. Future 

research suggests integrating these methods into a unified framework sensitive to real-time data and 

industry conditions, exploring case studies, and addressing external factors like policies and climate. 

It emphasizes training and collaboration for practical application, aiming to optimize efficiency and 

sustainability across mining and other sectors. 
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