Converting Biomass into Biofuel using Production Techniques: A Review
DOI:
https://doi.org/10.26555/chemica.v11i3.317Keywords:
Biomass, Biofuel, Fermentation, Generation biofuel, ThermochemicalAbstract
Biomass is a widely popular form of renewables as an alternative to fossil fuels, the dwindling oil resources and the escalation of environmental issues related to climate change. Biofuel has gained great importance as a source of bioenergy due to its two characteristics: sustainability and renewal. The biomass abundantly available in nature can be converted into various types of biofuel. This review provides a summary of biomass and its sources, as well as types of biofuels, their generations and technologies for producing biomass (Thermochemical, Biochemical, Biological, Physical, Ultrasonic, Microwave, Nanotechnology) discussing competitive benefits, disadvantages of these technologies and the conversion of biomass and their potential environmental impacts, in addition to clarifying biofuel products, which included production of bioethanol, biomethanol they can be used fuel for internal combustion vehicles, transportation and industry for their role in reducing greenhouse gas emissions and producing biodiesel, which is considered a good alternative to petroleum diesel. Biogas is not used as fuel unless modified, and future research can be directed towards marketing sustainable biofuel.
References
M. Yumurtaci, and A. Kecebas, “Renewable energy and its university level education in Turkey,” Energy Edu. Sci. Technol. Part B, vol. 3, pp. 143-152, Jan 2011.
Y. Sahin, “Environmental impacts of biofuels,” Energy Edu. Sci. Technol. Part A, vol. 26, pp. 129-142, 2011.
A. Demirbas, “Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems”, Applied Energy, vol. 88, pp. 3541-3547, Oct 2011, doi:10.1016/j.apenergy.2010.12.050.
R. R. Tan, D. C. Foo, K. B. Aviso, and D. K. Ng, “The use of graphical pinch analysis for visualizing water footprint constraints in biofuel production,” Applied Energy, vol. 86, no. 5, pp. 605-609, May 2009, doi: 10.1016/j.apenergy.2008.10.004.
G. James, J.G. Speight, and Singh K., “Environmental management of energy from biofuels and biofeedstocks,” Hoboken: John Wiley & Sons, ISBN: 9781118915127, 2014, doi: 10.1002/9781118915141.
F. Aksoy, H. Bayrakceken, T. Eryilmaz, and L. Aksoy, “Analyzing the impact of using different methyl esters in a diesel engine on engine performance and emissions,” Energy Edu. Sci. Technol. Part A., vol. 27, no. 1, pp. 25-34, 2011.
J. Goldemberg, T. B. Johansson, A. K. N. Reddy, and R. H. Williams, “A global clean cooking fuel initative,” Energy Sustain. Develop., vol. 8, no. 3, pp. 5-12, Sep 2004, doi: 10.1016/S0973-0826(08)60462-7.
P. Lauri, P. Havlik, G. Kindermann, N. Forsell, H. Bottcher, and M. Obersteiner, “Woody biomass energy potential in 2050,” Energy Policy, vol. 66, pp. 19-31, Mar 2014, doi: 10.1016/j.enpol.2013.11.033.
L.V. Reddy, “Potential bioresources as future sources of biofuels production: an overview,” Biofuel Technologies, vol. 3, pp. 223-258, Aug 2013, doi: 10.1007/978-3-642-34519-7_9.
S. V. Archonotoulis, J. Vos, X. Yin, L. Bastiaans, N. G. Danalatos, and P. C. Struik, “Temporal dynamics of light and nitrogen vertical distributions in canopies of sunflower, kenaf and Cynara,” Field Crops Resarch, vol. 122, no. 3, pp. 186-198, Jun 2011, doi: 10.1016/j.fcr.2011.03.008.
M. Kaltschmitt, N.J. Themelis, L. Y. Bronicki, L. Soder, and L. A. Vega, “Renewable energy from biomass, introduction,” Renew. Energy Systems, pp. 1393-1396, 2013, doi: 10.007/978-1-4614-5820-3_924.
D. Chen, L. Yin, H. Wang, and P. He, “Reprint of: pyrolysis technologies for municipal solid waste: a review,” Waste Management, vol. 37, pp. 116-136, Mar 2015, doi: 10.1016/j.wasman.2015.01.022.
R. Lemus and R. Lal, “Bioenergy crops and carbon sequestration,” Criti. Rev. Pla. Sci., vol. 24, pp. 1-21, Feb 2005, doi: 10.1080/07352680590910393.
M. H. Langholtz, B. J. Stokes, and L. M. Eaton, “2016 Billion-Ton Report: Advancing Domestic Resources for a Thriving Bioeconomy (exective summary),” Industrial Biotechnology, vol. 12, pp. 282-289, Oct 2016, doi:10.1089/ind.2016.29051.doe.
J. A. Libra, K. S. Ro, C. Kammann, A. Funke, N. D. Berge, Y. Neubauer, M. Titirici, C. Fuhner, O. Bens, J. Kern, and K. Emmerich, “Hydrothermal carbonization of biomass residuals: a comparative review of chemistry, processes and application of wet and dry pyrolysis,” Biofuels, vol. 2, no. 1, pp. 71-106, Jan 2011, doi: 10.4155/bfs.10.81.
E. Danso-Boateng, R. G. Holdich, G. Shama, A. D. Wheatley, M. Sohail, and S. J. Martin, “Kinetics of faecal biomass hydrothermal carbonization for hydrochar production,” Applied Energy, vol. 111, pp. 351-357, Nov 2013, doi: 10.1016/j.apenergy.2013.04.090.
M. Inyang, B. Gao, P. Pullammanappallil, W. Ding, and A. R. Zimmerman, “Biochar from anaerobically digested sugarcane bagasse,” Bioresource Technology, vol. 101, no. 22, pp. 8868-8872, Nov 2010, doi: 10.1016/j.biortech.2010.06.088.
A. J. Ragauskas, M. Nagy, D.H. Kim, C. A. Eckert, J. P. Hallett, and C. L. Liotta, “From wood to fuels: integrating biofuels and pulp production,” Industrial Biotechnology, vol. 2, no. 1, pp. 55-65, Jan 2006, doi: 10.1089/ind.2006.2.55.
J. Ren, P. Yu, and X. Xu, “Straw utilization in china-status and recommendations”, Sustainability, vol. 11, no. 6, pp. 1762, Mar 2019, doi: 10.3390/su11061762.
L. Wei, F. Zhu, Q. Li, C. Xue, X. Xia, H. Yu, Q. Zhao, J. Jiang, and S. Bai, “Development, current state and future trends of sludge management in china: based on exploratory data and CO2 – equivalent emissions analysis,” Environmental International, vol. 144, pp. 106093, Nov 2020, doi: 10.1016/j.envint.2020.106093.
A. C. Caputo and P. M. Pelagagge, “RDF production plants: I design and costs,” Appl. Therm. Eng., vol. 22, no. 4, pp. 423-437, Mar 2002, doi: 10.1016/S1359-4311 (01)00100-4.
S. Luo, B. Xiao, Z. Hu, and S. Liu, “Effect of particle size on pyrolysis of single-component municipal solid waste in fixed bed reactor,” Int. J. Hyd. Eng., vol. 35, no. 1, pp. 93-97, Jan 2010, doi: 10.1016/j.ijhydene.2009.10.048.
T. V. Ramachandra, D. M. Madhab, S. Shilpi, and N. V. Joshi, “Algal biofuel from urban wastewater in India: scope and challenges,” Renew. Sustain. Energy Rev., vol. 21, pp. 767-777, May 2013, doi: 10.1016/j.rser.2012.12.029.
N. Gaurav, S. Sivasankari, G. S. Kiran, A. Ninawe, and J. Selvin, “Utilization of bioresources for sustainable biofuels: a review,” Renew. Sustain. Energy Rev., vol. 73, pp. 205-214, Jun 2017, doi: 10.1016/j.rser.2017.01.070.
T. G. Ambaye, M. Vaccari, A. Bonilla-Petriciolet, S. Prasad, E. D. Hullebusch, and S. Rtimi, “Emerging technologies for biofuel production: a critical review on recent progress, challenges and perspectives,” J. Envir. Manag., vol. 290, pp. 112627, May 2021, doi: 10.1016/j.jenvman.2021.112627.
J. Popp, Z. Lakner, M. Rakos, and M. Fari, “The effect of bioenergy expansion: food, energy, and environment,” Renew. Sustain. Energy Rev., vol. 32, pp. 559-578, Apr 2014, doi:10.1016/j.rser.2014.01.056.
S. Prasad, S. Kumar, K. K. Yadav, J. Choudhry, H. Kamyab, Q. Bach, K. R. Sheetal, S. Kannojiya, and N. Gupta, “Screening and evaluation of cellulytic fungal strains for saccharification and bioethanol production from rice residue,” Energy, vol. 25, pp. 116422, Jan 2020, doi: 10.1016/j.energy.2019.116422.
A. Talebian-Kiaklaieh, N. A. S. Amin, and H. Mazaheri, “A review on novel processes of biodiesel production from waste cooking oil,” Applied Energy, vol. 104, pp. 683-710, Apr 2013, doi: 10.1016/j.apenergy.2012.11.061.
A. E. M. R. Afify, E. A. Shalaby, and S. M. M. Shanab, “Enhancement of biodesel production from different species of algae,” Grasas y Aceites, vol. 4, pp. 416-422, Dec 2010, doi: 10.3989/gya.021610.
L. Brennan, and P. Owende, “Biofuels from microalgae-a review of technologies from production, processing, and extractions of biofuels and co-products,” Renew. Sustain. Energy Rev., vol. 14, no. 2, pp. 557-577, Feb 2010, doi: 10.1016/j.rser.2009.10.009.
Z. Baicha, M. J. Salar-Garcia, V. M. Ortiz-Martine, F. J. Hernandez-Fernandez, A. P. Delos Rios, N. Labjar, E. Lotfi, and M. Elmahi, “A critical review on microalgae as an alternative source for bioenergy production: a promising low-cost substrate for microbial fuel cells,” Fuel Process. Technol., vol. 154, pp. 104-116, Dec 2016, doi: 10.1016/j.fuproc.2016.08.017.
K. H. Jeswani, A. Chilvers, and A. Azapagic, “Environmental sustainability of biofuels: a review,” Proc. Math. Phys. Eng. Soc. A., vol. 476, pp. 2243, 2020, doi: 10.1098/rspa.2020.0351.
B. M. Berla, R. Saha, C. M. Immethun, C. D. Maranas, T. S. Moon, and H. B. Pakrasi, “Synthetic biology of cyanobacteria: unique challenges and opportunities,” Front. Microbiol., vol. 4, pp. 246, 2013, doi: 10.3389/fmicb.2013.00246. eCollection 2013.
N. Binhayeeding, T. Yunu, N. Pichid, S. Klomklao, and K. Sangkharak, “Immobilisation of candida rugosa lipase on polyhydrxybutyrate via a combination of a dsorption and cross-linking agents to enhance acylglycerol production,” Process Biochemistry, vol. 95, pp. 174-185, Aug 2020, doi: 10.1016/j.procbio.2020.02.007.
J. Lewandrowski, J. Rosenfeld, D. Pape, T. Hendrickson, K. Jaglo, and K. Moffroid, “The greenhouse gas benefits of corn ethanol-assessing recent evidence,” Biofuels, vol. 11, pp. 361-375, Mar 2019, doi: 10.1080/17597269.2018.1546488.
C. Boutesteijn, D. Drabik, and T.J. Venus, “The interaction between EU biofuel policy and first-and second-generation biodiesel production,” Ind. Crop. Produ., vol. 106, pp. 124-129, Nov 2017, doi: 10.1016/j.indcrop.2016.09.067.
M. M. Rahman, M. Rasul, and N. M. S. Hassan, “Study on the tribological characteristics of Australian native first generation and second generation biodiesel fuel,” Energies, vol. 10, pp. 55, Jan 2017, doi: 10.3390/en10010055.
M. Kowalska, A. Wegierek-Ciuk, K. Brzoska, M. Wojewodzka, S. Meczynska-Wielgosz, J. Gromadzka-Ostrowska, R. Mruk, J. Qvervik, M. Kruszewski, and A. Lankoff, “Genotoxic potential of diesel exhaust particles from the combustion of first-and second-generation biodiesel fuels-the fuelhealth project,” Envir. Sci. Pollu. Res., vol. 24, pp. 24223-24234, Sep 2017, doi:10.1007/s11356-017-9995-0.
Erdiwansyah, R. Mamat, M. S. M. Sani, K. Sudhakar, A. Kadarohman, and R. E. Sardjono, “An overview of higher alcohol and biodiesel as alternative fuels in engines,” Energy Reports, vol. 5, pp. 467-479, Nov 2019, doi: 10.1016/j.egyr.2019.04.009.
M. Ertas and M. H. Alma, “Slow pyrolysis of chinaberry (Melia azedarach L.) seeds: characterization of bio-oils and bio-chars,” Edu. Sci. Technolo. Part C, vol. 2, pp. 149-170, 2010.
S. Ban, W. Lin, F. Wu, and J. Luo, “Algal-bacterial cooperation improves algal photolysis-mediated hydrogen production,” Bioresour Technology, vol. 251, pp. 350-357, Mar 2018, doi: 10.1016/j.biortech.2017.12.072.
M. A. Scaife, G. T. D. T. Nguyen, J. Rico, D. Lambert, K. E. Helliwell, and A. G. Smith, “Establishing chlamydomonas reinhardtii as an industrial biotechnology host,” The Plant Journal, vol. 82, pp. 532-546, Mar 2015, doi: 10.1111/tpj.12781.
O. Inganas and V. Sundstrom, “Solar energy for electricity and fuels,” Ambio., vol. 45, pp. 15-23, Dec 2016, doi: 10.1007/s13280-015-0729-6.
P. Azadi, O. R. Inderwildi, R. Farnood, and D. A. King, “Liquid fuels, hydrogen and chemicals form lignin: a critical review,” Renew. Sustain. Energy Rev., vol. 21, pp. 506-523, May 2013, doi: 10.1016/j.rser.2012.12.022.
R. M. Jingura, D. Musademba, and R. Kamusoko, “A review of the state of biomass energy technologies in Zimbabwe”, Renew. Sustain. Energy Rev., vol. 26, pp. 652-659, Oct 2013, doi: 10.1016/j.rser.2013.05.036.
A. Limayem and S. Ricke, “Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects,” Prog. Eng. Combus. Sci., vol. 38, no.4, pp. 449-467, Aug 2012, doi:10.1016/j.pecs.2012.03.002.
K. Jacobson, K. C. Maheria, and A. K. Dalai, “Bio-oil valorization: a review,” Renew. Sustain. Energy Rev., vol. 23, pp. 91-106, Jul 2013, doi: 10.1016/j.rser.2013.02.036.
R. A. Sheldon, “Green and sustainable manufacture of chemicals from biomass: state of the art,” Green Chemistry, vol. 16, pp. 950-963, 2014, doi: 10.1039/C3GC41935E.
F. Passos, J. Carretero, and I. Ferrer, “Comparing pretreatment methods for improving microalgae anaerobic digestion: thermal, hydrothermal, microwave, and ultrasound,” Chem. Eng. J., vol. 279, pp. 667-672, Nov 2015, doi: 10.1016/j.cej.2015.05.065.
B. Molinuevo-Salces, A. Mahdy, M. Ballesteros, and C. Gonzalez-Fernandez, “From piggery wastewater nutrients to biogas: microalgae biomass revalorization through anaerobic digestion,” Renew. Energy, vol. 96, pp. 1103-1110, Oct 2016, 10.1016/j.renene.2016.01.090.
J. H. Hwang, A. N. Kabra, M. K. Ji, J. Choi, M. M. El-Dalatong, and B.H. Jeon, “Enhancement of continuous fermentative bioethanol production using combined treatment of mixed microalgae biomass,” Algal Res., vol. 17, pp. 14-20, Jul 2016, doi: 10.1016/j.algal.2016.03.029.
D. Segmee, B. Cheirsilp, T. T. Suksaroge, and P. Prasertsan, “Biophotolysis-based hydrogen and lipid production by oleaginous microalgae using crude glycerol as exogenous carbon source”, Int. J. Hydrogen Energy, vol. 42, no. 4, pp. 1970-6, Jan 2017, doi: 10.1016/j.ijhydene.2016.10.089.
J. Lu, J. Zhang, Z. Zhu, Y. Zhang, Y. Zhao, R. Li, J. Watson, B. Li, and Z. Liu, “Simultaneous production of biocrude oil and recovery of nutrients and metals from human feces via hydrothermal liquefaction,” Energy Convers. Manag., vol. 134, pp. 340-346, Feb 2017, doi: 10.1016/j.enconman.2016.12.052.
E. A. Couto, F. Pinto, F. Varela, A. Reis, P. Costa, and M. L. Calijuri, “Hydrothermal liquefaction and biomass produced from domestic sewage treatment in high-rate ponds,” Renew. Energy, vol. 118, pp. 644-653, Apr 2018, doi: 10.1016/j.renene.2017.11.041.
H. Jahromi and F. A. Agblevor, “Hydrodeoxgenation of aqueous-phase catalytic pyrolysis oil to liquid hydrocarbons using multifunctional nickel catalyst,” Ind. Eng. Chem. Res., vol. 57, no. 39, pp. 13257-13268, Sept 2018, doi: 10.1021/acs.iecr.8b02807.
D. W. Cho, D. C. Tsang, S. Kim, E. E. Kwon, G. Kwon, and H. Song, “Thermochemical conversion of cobalt-loaded spent coffee grounds for production of energy resource and environment catalyst,” Bioresour. Technol., vol. 270, pp. 346-351, Dec 2018, doi: 10.1016/j.biortech.2018.09.046.
L. Liu, Y. Huang, J. Cao, C. Liu, L. Dong, L. Xu, and J. Zha, “Experimental study of biomass gasification with oxygen-enriched air in fluidized bed gasifier,” Sci. Total Environ., vol. 626, pp.423-433, Jun 2018, doi: 10.1016/j.scitotenv.2018.01.016.
J. Martin-Pascual, J. Jodar, M. L. Rodriguez, and M. Zamorano, “Determination of the optimal operative conditions for the torrefaction of olive waste biomass,” Sustainability, vol. 12, no. 16, pp. 6411, Aug 2020, doi: 10.3390/su12166411.
X. Liu, Z. Yao, H. Cong, L. Zhao, L. Huo, and J. Song, “Effects of operating conditions and pre-densification on the torrefaction products of sorghum strow,” Int. J. Agric. Biol. Eng., vol. 13, pp. 219-225, Jul 2020.
S. Prasad, A. Singh, N. E. Korres, D. Rathore, S. Sevda, and D. Pant, “Sustainable utilization of crop residues for energy generation: a life cycle assessment (LCA) perspective,” Bioresour. Technol., vol. 303, pp. 122964, 2020.
K. Shi, J. Yan, J. A. Menendez, X. Luo, G. Yang, Y. Chen, E. Lester, and T. Wu, “Production of H2-rich syngas from ligncellulosic biomass using microwave-assisted pyrolysis coupled with activated carbon enabled reforming,” Front Chem., vol. 8, pp. 3, Jan 2020, doi: 10.3389/fchem.2020.00003.
S. Y. Foong, R. K. Liew, Y. Yang, Y. W. Cheng, P. N. Y. Yek, W.A.W. Mahari, X. Y. Lee, C. S. Han, D. N. Vo, Q. Van Le, M. Aghbashlo, M. Tabatabaei, C. Sonne, W. Peng, and S. Lam, “Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: progress, challenges and future directions”, Chem. Eng. J., vol. 389, pp. 124401, Jun 2020, doi: 10.1016/j.cej.2020.124401.
E. J. Cho, L. T. P. Trinh, Y. Song, Y. G. Lee, and H. J. Bae, “Bioconversion of biomass waste into high value chemicals,” Bioresource Technology, vol. 298, pp. 122386, Feb 2020, doi: 10.1016/j.biortech.2019.122386.
H. Kerckhoffs and R. Renquist, “Biofuel from plant biomass,” Agro. Susta. Develop., vol. 33, pp. 1-19, 2013, doi: 10.1007/s13593-012-0114-9.
N. Canabarro, J. F. Soares, C. G. Anchieta, C. S. Kelling, and M. A. Mazutti, “Thermochemical processes for biofuels production from biomass,” Sustain. Chem. Process, vol. 1, pp. 22, Nov2013, doi: 10.1186/2043-7129-1-22.
R. Saidur, G. Boroumandjazi, S. Mekhilef, and H. A. Mohammed, “A review on energy analysis of biomass-based fuels”, Renew. Sustain. Energy Rev., vol. 16, no. 2, pp. 1217-1222, Feb 2012, doi: 10.1016/j.rser.2011.07.076.
B. Batidzirai, M. Valk, B. Wicke, M. Junginger, V. Daioglou, W. Euler, and A. P. C. Faaij, “Current and future technical, economic and environmental feasibility of maize and wheat residues supply for biomass energy application: Illustrated for South Africa,” Biomass Bioenergy, vol. 92, pp. 106-129, Sep 2016, doi: 10.1016/j.biombioe.2016.06.010.
L. J. R. Nunes, J. C. O. Matias, and J. P. S. Catalao, “Mixed biomass pellets for thermal energy production: a review of combustion models,” Applied Energy, vol. 127, pp. 135-140, 2014, doi: 10.1016/j.apenergy.2014.04.042.
S. S. Siwal, Q. Zhang, N. Devi, A.K. Saini, V. Saini, B. Pareek, S. Gaidukovs, and V. K. Thakur, “Recovery processes of sustainable energy using different biomass and wastes,” Renew. Sustain. Energy Rev., vol. 150, pp. 111483, Oct 2021, doi: 10.1016/j.rser.2021.111483.
S. Brethauer and M. H. Studer, “Biochemical conversion processes of lignocellulosic biomass to fuels and chemicals-a review,” Chimia (Aarau), vol. 69, pp. 572-81, 2015, doi: 10.2533/chimia.2015.572.
V. Makareviciene and E. Sendzikiene, “Application of microalgae biomass for biodiesel fuel production,” Energies, vol. 15, no. 11, pp. 4178, Jun 2022, doi: 10.3390/en15114178.
H. Zabed, J. N. Sahu, A. N. Boyce, and G. Faruq, “Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches,” Renew. Sustain. Energy Rev., vol. 66, pp. 751-774, Dec 2016, doi: 10.1016/j.rser.2016.08.038.
I. Okajima and T. Sako, “Energy conversion of biomass with supercritical and subcritical water using large-scale plants,” J. Biosci. Bioeng., vol. 117, no. 1, pp. 1-9, Jan 2014, doi: 10.1016/j.jbiosc.2013.06.010.
T. R. Sarker, F. Pattnaik, S. Nanda, A. K. Dalai, V. Meda, and S. Naik, “Hydrothermal pretreatment technologies for lignocellulosic biomass: a review of steam explosion and subcritical water hydrolysis,” Chemosphere, vol. 284, pp. 131372, Dec 2021, doi: 10.1016/j.chemosphere.2021.131372.
F. Dziike, L. Z. Linganiso, N. Mpongwana, L. M. Legodi, P. Support, S. Africa, S. Africa, and F. Dziike, “Biomass conversion into recyclable strong materials,” South African J. Sci., vol. 118: pp. 7-8, 2022, doi: 10.17159/sajs.2022/9747.
W. Lu, M. A. Alam, W. Luo, and E. Asmatulu, “Integrating spirulina platensis cultivation and aerobic composting exhaust for carbon mitigation and biomass production,” Bioresource Technology, vol. 271, pp. 59-65, Jan 2019, doi: 10.1016/j.biortech.2018.09.082.
K. Chojnacka, K. Moustakas, and A. Witek-Krowiak, “Bio-based fertilizers: a practical approach towards circular economy,” Bioresource Technology, vol. 295, pp. 122223, Jan 2020, doi: 10.1016/j.biortech.2019.122223.
A. A. Mariod, “Extraction, purification, and Modification of Natural polymers,” In book: Natural Polymers, pp. 63-91, 2016, doi: 10.1007/978-3-319-26414-1_3.
V. K. Sharma, A. Sharma, and S. Kar, “Technology development and innovation for production of next-generation biofuel from lignecellulosic wastes, Energy sustainability through green energy,” Green Energy Technology, pp. 315-350, Apr 2015, doi: 10.1007/978-81-322-2337-5_13.
G. D. Sorita, S. Favaro, A. Ambrosi, and M. Di Luccio, “Aqueous extraction processing: an innovative and sustainable approach for recovery of unconventional oils,” Trends Food Science & Technology, vol. 133, pp. 99-113, Mar 2023, doi: 10.1016/j.tifs.2023.01.019.
Z. L. Xiu and A. P. Zeng, “Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol,” Appl. Microbiol. Biotechnol., vol. 78, pp. 917-926, Apr 2008, doi: 10.1007/s00253-008-1387-4.
A. A. Adeleke, P. P. Ikubanni, T. A. Orhadahwe, C. T. Christopher, J. M. Akano, O. O. Agboola, S. O. Adegoke, A.O. Balogun, and R. A. Ibikunle, “Sustainability of multifaceted usage of biomass: a review,” Heliyon, vol. 7, no. 9, pp. e08025, Sep 2021, doi: 10.1016/j.heliyon.2021.e08025.
C. Onumaegbu, J. Mooney, A. Alaswad, and A. G. Olabi, “Pre-treatment methods for production of biofuel from microalgae biomass,” Renew. Sustain. Energy Rev., vol. 93, pp. 16-26, Oct 2018, doi: 10.1016/j.rser.2018.04.015.
F. Motasemi and F. N. Ani, “A review on microwave-assisted production of biodiesel,” Renew. Sustain. Energy Rev., vol. 16, no. 7, pp. 4719-4733, Sep 2012, doi: 10.1016/j.rser.2012.03.069.
M. Feyzi and L. Norouzi, “Preparation and kinetic study of magnetic Ca/Fe3O4@SiO2 nanocatalysts for biodiesel production,” Renew. Energy, vol. 94, pp. 579-586, Aug 2016, doi: 10.1016/j.renene.2016.03.086.
Y. K. Kim, S. E. Park, H. Lee, and J. Y. Yun, “Enhancement of bioethanol production in syngas fermentation with clostridium ljungdahlii using nanoparticles,” Bioresource Technology, vol. 159, pp. 446-450, May 2014, doi: 10.1016/j.biortech.2014.03.046.
P. Vasudevan, S. Sharma, and A. Kumar, “Liquid fuel from biomass: an overview,” J. Sci. Indust. Res., vol. 64, no. 11, pp. 822-831, Dec 2005.
V. Passoth and M. Sandgren, “Biofuel production from straw hydrolysates: current achievements and perspectives,” Appl. Microbiol. Biotechnol., vol. 103, pp. 5105-5116, Jul 2019, doi:10.1007/s00253-019-09863-3.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Universitas Ahmad Dahlan

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.