Sentiment Analysis about Electric Motorbikes in Indonesia Using Twitter Data
DOI:
https://doi.org/10.12928/si.v22i1.158Keywords:
Electric motorcycles, Sentiment analysis, TwitterAbstract
Along with the rapid development of technology, various types of transportation have experienced increased innovation in shapes, colours,
models, and even engines. However, one thing that needs special attention is the number of pollutants or emissions released by vehicles. One effort to reduce emissions is increasing the production of Battery-Based Electric Motorized Vehicles. Battery-based electric vehicles developed in Indonesia include electric cars and electric motorcycles. Among these types of electric vehicles, Indonesian society widely adopts electric motorcycles. However, sales of electric motorbikes were only 15 thousand units, lower than sales of petrol motorbikes which reached 5 million units. This study contributes to understanding further how the community responds to electric motorcycles in detail through sentiment analysis on social media data. Consumer acceptance of electric motorcycles can be seen from the numerous active Twitter users in Indonesia who provide positive and negative comments on the presence of electric motorcycles. Text information based on public comments in Indonesia via Twitter is collected using Sentiment Analysis in R Studio. Twitter comments will be classified into positive, negative, and neutral groups. The results show 63% positive, 21% unfavourable, and 14% neutral opinions. This condition means that Indonesian society accepts and has a supportive opinion of the presence of electric motorcycles. The government and entrepreneurs can use this information to create electric motorcycles that align with the community's preferences.
References
Abidin, A. U., Maziya, F. B., Susetyo, S. H., Yoneda, M., & Matsui, Y. (2024). Heavy metal air pollution in an Indonesian landfill site: Characterization, sources, and health risk assessment for informal workers. Environmental Advances, 15(February), 100512, https://doi.org/10.1016/j.envadv.2024.100512.
Ashari, N., Mifta Al Firdaus, M. Z., Budi, I., Santoso, A. B., & Kresna Putra, P. (2023). Analyzing Public Opinion on Electrical Vehicles in Indonesia Using Sentiment Analysis and Topic Modeling. ICCoSITE 2023 - International Conference on Computer Science, Information Technology and Engineering: Digital Transformation Strategy in Facing the VUCA and TUNA Era, 461–465, https://doi.org/10.1109/ICCoSITE57641.2023.10127834.
Fanissa, S., Fauzi, M. A., & Adinugroho, S. (2018). Analisis Sentimen Pariwisata di Kota Malang Menggunakan Metode Naive Bayes dan Seleksi Fitur Query Expansion Ranking. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 2(8), 2766–2770, https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/1962.
Fitrianto, H. (2023). Analisis Penggunaan Kendaraan Listrik Sebagai Upaya Penurunan Emisi Lingkungan Case Study Kendaraan Listrik di Provinsi Sumatera Utara. Cakrawala Repositori IMWI, 6(2), 1056–1067, https://doi.org/10.52851/cakrawala.v6i2.302.
Garcia, K., & Berton, L. (2021). Topic detection and sentiment analysis in Twitter content related to COVID-19 from Brazil and the USA. Applied Soft Computing, 101, 107057, https://doi.org/10.1016/j.asoc.2020.107057.
Gustiana, A., Pramono, G. E., & Waluyo, R. (2022). Rancang Bangun Sepeda Motor Listrik “Meliska” (Mesin Lima Belas Uika). Jurnal AMIKANIKA, 4(2), https://ejournal.uika-bogor.ac.id/index.php/ALMIKANIKA/article/view/7054.
Imam, A., & Fajtriab, H. (2015). Implementasi Text Mining pada Mesin Pencarian Twitter untuk Menganalisis Topik - Topik Terkait “KPK dan Jokowi.” Prosiding Seminar Nasional Matematika Dan Pendidikan Matematika UMS 2015, 570–581, https://publikasiilmiah.ums.ac.id/xmlui/handle/11617/5811.
Indonesia, CNN. (2021). Target Produksi Mobil dan Motor Listrik 2 Juta Unit pada 2025, https://www.cnnindonesia.com/otomotif/20210223093952-603-609668/target-produksi-mobil-dan-
motor-listrik-2-juta-unit-pada-2025.
Indonesia, P. P. (2019). Peraturan Presiden (PERPRES) Nomor 55 Tahun 2019 tentang Percepatan Program Kendaraan Bermotor Listrik Berbasis Baterai (Battery Electric Vehicle) untuk Transportasi Jalan (Issue 55).
Indrayuni, E. (2019). Klasifikasi Text Mining Review Produk Kosmetik Untuk Teks Bahasa Indonesia Menggunakan Algoritma Naive Bayes. Jurnal Khatulistiwa Informatika, 7(1), 29–36, https://doi.org/10.31294/jki.v7i1.5740.
Istiqomah, N. A., & Marleni, N. N. N. (2020). Particulate air pollution in Indonesia: Quality index, characteristic, and source identification. IOP Conference Series: Earth and Environmental Science, 599(1), https://doi.org/10.1088/1755-1315/599/1/012084.
Kurniawan, R., & Apriliani, A. (2020). Analisis sentimen masyarakat terhadap virus corona berdasarkan opini dari Twitter berbasis web scraper. Jurnal INSTEK (Informatika Sains dan Teknologi), 5(1), 67-75, https://doi.org/10.24252/instek.v5i1.13686.
Lestari, P., Arrohman, M. K., Damayanti, S., & Klimont, Z. (2022). Emissions and spatial distribution of air pollutants from anthropogenic sources in Jakarta. Atmospheric Pollution Research, 13(9), 101521, https://doi.org/10.1016/j.apr.2022.101521.
Liu, B. (2011). Web Data Mining. Springer Heidelberg, https://doi.org/10.1007/978-3-642-19460-3.
Malik, H., Shakshuki, E. M., & Yasar, A. U. H. (2021). Approximating Viewership of Streaming T.V Programs Using Social Media Sentiment Analysis. Procedia Computer Science, 198(2021), 94–101, https://doi.org/10.1016/j.procs.2021.12.215.
Masruroh, Nursanti, T. D., Irvianti, L. S. D., & Limin, I. (2023). The Importance of Increasing Public Adoption of Electric Vehicles in Reducing Jakarta’ s Air Pollution The Importance of Increasing Public Adoption of Electric Vehicles in Reducing Jakarta’ s Air Pollution. IOP Conf. Series: Earth and Environmental Science, https://doi.org/10.1088/1755-1315/1324/1/012042.
Merdiansah, R., Siska, & Ridha, A. A. (2024). Merdiansah-Analisis Sentimen Pengguna X Indonesia Terkait Kendaraan Listrik Menggunakan IndoBERT.pdf. Jurnal Ilmu Komputer Dan Sistem Informasi (JIKOMSI), 7(1), 221–228, https://doi.org/10.55338/jikomsi.v7i1.2895.
Miftachul Ulum, Mutiara Hikmah, Achmad Fiqhi Ibaidillah, & Kunto Aji Wibisono. (2021). Rancang Bangun Sepeda Listrik 250 Watt Dengan Mengukur Kecepatan Dan Daya Baterai. Jurnal JEETech, 2(1), 7–12, https://doi.org/10.48056/jeetech.v2i1.150.
Neogi, A. S., Garg, K. A., Mishra, R. K., & Dwivedi, Y. K. (2021). Sentiment analysis and classification of Indian farmers’ protest using twitter data. International Journal of Information Management Data Insights, 1(2), 100019, https://doi.org/10.1016/j.jjimei.2021.100019.
Nurhadi. (2018). Pengembangan Sepeda Motor Listrik sebagai Sarana Tujuan penelitian Metodologi penelitian Penelitian Terdahulu. Seminar Nasional Inovasi Dan Aplikasi Teknologi Di Industri 2018, 249–255, https://ejournal.itn.ac.id/index.php/seniati/article/download/1371/1230.
Olabanjo, O., Wusu, A., Afisi, O., Asokere, M., Padonu, R., Olabanjo, O., Ojo, O., Folorunso, O., Aribisala, B., & Mazzara, M. (2023). From Twitter to Aso-Rock: A sentiment analysis framework for understanding Nigeria 2023 presidential election. Heliyon, 9(5), e16085, https://doi.org/10.1016/j.heliyon.2023.e16085.
Persadaa, S. F., Kumalasaria, R. D., Shantia, M., Lukiyantoa, K., Putri, G. S., Ramadhana, C. A., Young, M. N., & Prasetyo, Y. T. (2024). How Social Media Reacting to Bakso Malang as Culinary Business on Post Covid 19: A Sentiment Analysis. Procedia Computer Science, 234, 463–469, https://doi.org/10.1016/j.procs.2024.03.028.
Pratama, Y., Murdiansyah, D. T., & Lhaksmana, K. M. (2023). Analisis Sentimen Kendaraan Listrik Pada Media Sosial Twitter Menggunakan Algoritma Logistic Regression dan Principal Component Analysis. Jurnal Media Informatika Budidarma, 7(1), 529–535, https://www.stmik-
budidarma.ac.id/ejurnal/index.php/mib/article/view/5575.
Pratiwi, A. A., Wibawa, B. M., & Baihaqi, I. (2020). Identifikasi Sepeda Motor Listrik Terhadap Niat Membeli: Kasus di Indonesia. Jurnal Sains Dan Seni ITS, 9(1), https://doi.org/10.12962/j23373520.v9i1.50819.
Ravi, S. S., Brace, C., Larkin, C., Aziz, M., Leach, F., & Turner, J. W. (2023). On the pursuit of emissions-free clean mobility – Electric vehicles versus e-fuels. Science of the Total Environment, 875(March), 162688, https://doi.org/10.1016/j.scitotenv.2023.162688.
Sadiq Okoh, A., & Chidi Onuoha, M. (2024). Immediate and future challenges of using electric vehicles for promoting energy efficiency in Africa’s clean energy transition. Global Environmental Change, 84(December 2023), 102789, https://doi.org/10.1016/j.gloenvcha.2023.102789.
Salsabila, H., Habibi, R., & Harani, N. H. (2023). Social Media-Based Sentiment Analysis: Electric Vehicle Usage in Indonesia. Indonesian Journal of Computer Science, 12(3), 1132–1146, https://doi.org/10.33022/ijcs.v12i3.3250.
Sukarno, I., Matsumoto, H., & Susanti, L. (2016). Transportation energy consumption and emissions - a view from city of Indonesia. Future Cities and Environment, 2(0), 6, https://doi.org/10.1186/s40984-016-0019-x.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Desrina Yusi Irawati, Agrienta Bellanov, Florencia Agatha Damayanti
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.