Successful phytoremediation of simulated steel rolling industry heavy metals-contaminated soils using a Sorghum bicolor cultivar from Riko, Katsina, Nigeria

Authors

  • Yahaya Riko Yunusa Umaru Musa 'Yar'adua University, Katsina
  • Zubairu Darma Umar Department of Microbiology, Faculty of Natural and Applied Sciences, Umaru Musa 'Yar'adua University, Katsina https://orcid.org/0000-0002-4638-4041
  • Kamaluddeen Kabir Department of Microbiology, Faculty of Natural and Applied Sciences, Umaru Musa 'Yar'adua University, Katsina

DOI:

https://doi.org/10.12928/si.v22i2.202

Keywords:

Bioengineering, Heavy Metals, Phytoremediation, Sorghum bicolor (L. Moench)

Abstract

The release of hazardous heavy metals (HMs) from industries and other sources threatens ecosystems in Katsina, Nigeria and beyond. Bioengineering through microbially-assisted phytoremediation (MAP) is the best innovative alternative to these industries for remediating HMs contaminated environments. Sorghum bicolor (L. Moench) had been reported to be efficient in heavy metals phytoremediation. This study evaluated the ability of a fast-growing local cultivar of S. bicolor (rirrik’a/rirritsa/mota in Hausa) from Riko village, Jibiya L.G.A., Katsina State, Nigeria to remediate mesocosms simulating mixed HMs contamination obtainable at the soils of the defunct DANA Steel Rolling Mills, Katsina industrial site, to residual concentrations matching USEPA/EU limits. A chronosequential, nutrient-poor phytoremediation approach was employed to study the restoration of the contaminated soils in greenhouse experiments. The bioremoval of HMs in individual (0.05-10 g/L Cr, 0.04-1 g/L Cu, 0.08-1 g/L Pb and 0.02-1 g/L Zn) and mixed mesocosms was studied over 8 weeks, in multiple replicates, with positive and negative controls. ANOVA, Mann-Whitney and Kruskal-Wallis (with Dunn’s post-hoc) tests were used to statistically analyse the obtained data. The results confirmed an overall bioremoval of 66.67% of the HMs. Bioremoval rates were statistically similar across all HMs (one-way ANOVA: p = 0.64); with 69.48% of Zn, 67.46% of Cu, 63.34% of Cr and 58.33% of Pb bioremoved. The final residual HMs were within limits set by EPA/EU (Mann Whitney U test: p = 0.23). Study verified the status of the local cultivar of S. bicolor as a suitable agent for safe, effective phytoremediation of industrial heavy metal contaminated sites. Thus, its use is recommended for on-the-field phytoremediation of hotspots of HM contamination within the study area and beyond. The study also contributes towards sustainable and eco-friendly practices by using phytoremediation to manage environmental wastes from industrial pollution.

Author Biographies

Zubairu Darma Umar, Department of Microbiology, Faculty of Natural and Applied Sciences, Umaru Musa 'Yar'adua University, Katsina

Dr. Zubairu Umar Darma is a Senior Lecturer in the Department of Microbiology, Umaru Musa 'Yar'adua University, Katsina, with over 16 years experience in lecturing, research and administration.

Kamaluddeen Kabir, Department of Microbiology, Faculty of Natural and Applied Sciences, Umaru Musa 'Yar'adua University, Katsina

Dr. Kamaluddeen Kabir is the current Head, Department of Microbiology, Umaru Musa 'Yar'adua University, Katsina. He has more than 14 years experience in lecturing, research, administration and advocacy.

References

Ahmad, I., Malik, S. A., Saeed, S., Rehman, A-u., & Munir, T. M. (2022). Phytoremediating a wastewater-irrigated soil contaminated with toxic metals: Comparing the efficacies of different crops. Soil Systems, 6, 77, https://doi.org/10.3390/soilsystems6040077.

Al Disi, Z., Al-Ghouti, A. M., & Zouari, N. (2022). Investigating the simultaneous removal of hydrocarbons and heavy metals by highly adapted Bacillus and Pseudomonas strains. Environmental Technology and Innovation, 27, 102513, https://doi.org/10.3390/su13147792.

Ameh, G. I., Nwamba, H. O., Nwani, C. D., & Ofordile, E. C. (2020). Effects of heavy metals on agronomic attributes of some selected cereal crops (Zea mays and Sorghum bicolor). Journal of Applied Life Sciences International, 23(9) 24–30, https://doi.org/10.9734/jalsi/2020/v23i930184.

Anbuganesan, V., Vishnupradeep, R., Mehnaz, N., Kumar, A., Freitas, H., & Rajkumar, M. (2024). Synergistic effect of biochar and plant growth promoting bacteria improve the growth and phytostabilization potential of Sorghum bicolor in Cd and Zn contaminated soils. Rhizosphere, 29, 100844, https://doi.org/10.1016/j.rhisph.2023.100844.

Babar, Z., Khan, M., Chotana, G. A., Murtaza, G., & Shamim, S. (2021). Evaluation of the potential role of Bacillus altitudinis MT422188 in nickel bioremediation from contaminated industrial effluents. Sustainability, 13, 7353, https://doi.org/10.3390/su13137353.

Balasubramanian, V. K., Dampanaboina, L., Cobos, C. J., Yuan, N., Xin, Z. & Mendu, V. (2021). Induced secretion system mutation alters rhizosphere bacterial composition in Sorghum bicolor (L.) Moench. Planta, 253, 33, https://doi.org/10.1007/s00425-021-03569-5.

Boechat, C. L., Carlos, F. S., doNascimento, C. W. A., de Quadros, P. D., de Sa, E. L. S., & Camargo, F. A. de O. (2020). Bioaugmentation-assisted phytoremediation of As, Cd, and Pb using Sorghum bicolor in a contaminated soil of an abandoned gold ore processing plant. Revista Brasileira Ciencia de Solo, (Brazilian Journal of Social Science), 44, e0200081, http://dx.doi.org/10.36783/18069657rbcs20200081.

Borah, P., Rene, E. R., Rangan, L., & Mitra, S. (2023). Phytoremediation of nickel and zinc using Jatropha curcas and Pongamia pinnata from the soils contaminated by municipal solid wastes and paper mill wastes. Environmental Research, 219, 115055, https://doi.org/10.1016/j.envres.2022.115055.

Bulgakov, V., Pascuzzi, S., Adamchuk, V., Gadzalo, J., Nadytko, V., Olt, J., Nowak, J., & Kalminsky, V. (2022). Dynamics of temperature variation in soil under allow tillage at different depths. Agriculture, 12(4), 450, https://doi.org/10.3390/agriculture12040450.

Calone, R., Sanoubar, R., Lambertini, C., Speranza, M., Antisari, L. V., & Vianello, G. (2020). Salt tolerance and Na allocation in Sorghum bicolor under variable soil and water salinity. Plants, 9(5), 561, https://doi.org/10.3390/plants9050561.

Chen, M., Guo, L., Ramakrishnan, M., Fei, Z., Vinod, K. K., Ding, Y., Jiao, C., Gao, Z., Zha, R., Wang, C., Gao, Z., Yu, F., Ren, G., & Wei, Q. (2022). Rapid growth of Moso bamboo (Phyllostachys edulis): Cellular roadmaps, transcriptome dynamics, and environmental factors. The Plant Cell, 34(10), 3577–3610, https://doi.org/10.1093/plcell/koac193.

Chen, Y., Wu, X., Lin, Z., Teng, D., Zhao, Y., Chen, S., & Hu, X. (2024). Screening of cadmium resistant bacteria and their growth promotion of Sorghum bicolor (L.) Moench under cadmium stress. Ecotoxicology and Environmental Safety, 272, 116012, https://doi.org/10.1016/j.ecoenv.2024.116012.

Christou, A., Georgiadou, E., Zissimos, A., Christoforou, I., Christofi, C., Neocleous, D., Dalias, P., Torrado, S., Argyraki, A., & Fotopoulos, V. (2020). Hexavalent chromium leads to differential hormetic or damaging effects in alfalfa (Medicago sativa L.) plants in a concentration-dependent manner by regulating nitro-oxidative and proline metabolism. Environmental Pollution, 267, 11537, https://doi.org/10.1016/j.envpol.2020.115379.

Chrysygyris, A., Hofte, M., Tzotzakis, N., Petropoulos, S. A., & Di Giola, F. (2022). Editorial: Micronutrients: The borderline between their beneficial role and toxicity in plants. Frontiers in Plant Science, 13, 840624, https://doi.org/10.3389/fpls.2022.840624.

Darma, Z. U. & Riko, Y. Y. (2022). Biodegradation of Petroleum Hydrocarbons, Understanding Basic Concepts. LAP Lambert Academic Publishers, Republic of Moldova. https://www.researchgate.net/publication/359721873_Biodegradation_of_Petroleum_Hydrocarbons_Understanding_Basic_Concepts

De Jesus Ferreira, F., Bonfa, C. S., De Oliveira, D. E. P., Magalhaes, M. A., Da C Parrella, R. A., & Dallago, G. M. (2023). Chemical-bromatological composition of silages from biomass sorghum genotypes. Pesquisa Agropecuária Tropical (Impresso), 53, https://doi.org/10.1590/1983-40632023v5376362.

Dianatdar, F., & Etemadifar, Z. (2024). Recent advances towards improved microbial bioremediation of heavy metal pollution. In Earth and environmental sciences library (Print) (pp. 115–138), https://doi.org/10.1007/978-3-031-53688-5_6.

Elevationmpa.net (2021). Riko, Jibia, Jibia, Nigeria on the Elevation Map. Topographic Map of Riko, Jibia, Nigeria. https://elevationmap.net/riko-jibiya-jibia-ng-10013911

Francis, H., Debs, E., Koubaa, M., Alrayess, Z., Maroun, R. G., & Louka, N. (2022). Sprouts use as functional foods. Optimization of germination of wheat (Triticum aestivum L.), Alfalfa (Medicago sativa L.), and Radish (Raphanus sativus L.) seeds based on their nutritional content evolution. Foods, 11(10), 1460, https://doi.org/10.3390/foods11101460.

Gagnon, V., Rodrigue-Morin, M., Tremblay, J., Wasserscheid, J., Champagne, J., Bellenger, J. P., Greer, C. W., & Roy, S. (2020). Life in mine tailings: microbial population structure across the bulk soil, rhizosphere, and roots of boreal species colonizing mine tailings in northwestern Quebec. Annals of Microbiology, 70, 41, https://doi.org/10.1186/s13213-020-01582-9.

Goyal, D., Yadav, A., Prasad, M., Singh, T., Shrivastav, P., Ali, A., Dantu, P. K., & Mishra, S. (2020). Effect of heavy metals on plant growth: An Overview. In M. Naeem, A. Ansari, S. Gill (Eds.) Contaminants in agriculture, Sources, impacts and management (pp. 79–101), https://doi.org/10.1007/978-3-030-41552-5_4.

Habyarimana, E., De Franceschi, P., Ercisli, S., Baloch, F. S., & Dall'Agata, M. (2020). Genome-wide association study forbiomass related traits in a panel of Sorghum bicolor and S. bicolor x S. halepense populations. Frontiers in Plant Science, 11, 551305, https://doi.org/10.3389/fpls.2020.551305.

Hannula, S. E., Heinan, R., Huberty, M., Steinauer, K., De Long, J. R., Jongen, R., and Bezemer, T. M. (2021). Persistence of plant-mediated microbial soil legacy effects in soil and inside roots. Nature Communications, 12, 5686, https://doi.org/10.1038/s41467-021-25971-z.

Haque, S., Srivastava, N., Pal, D. B., Alkhanani, M. F., Almalki, A. H., Areeshi, M. Y., Naidu, R., & Gupta, V. K. (2022). Functional microbiome strategies for the remediation of petroleum-hydrocarbon and heavy metal contaminated soils: A review. Science of the Total Environment, 833, 155222, https://doi.org/10.1016/j.scitotenv.2022.155222.

Mazzon, M., Cionci, N. B., Buscaroli, E., Alberoni, D., Baffoni, L., Di Gioia, D., Marzadori, C., Barbanti, L., Toscano, A., & Braschi, I. (2023). Pot experimental trial for assessing the role of different composts on decontamination and reclamation of a polluted soil from an illegal dump site in Southern Italy using Brassica juncea and Sorghum bicolor. Environmental Science and Pollution Research International, https://doi.org/10.1007/s11356-023-31256-3.

Mendy, P. A., Kargbo, A., & Entonu, M. E. (2021). Bioremediation of heavy metal ions from contaminated soil and water by microbes: A review. African Journal of Biological Sciences, 3(2), 1-8, http://dx.doi.org/10.33472/AFJBS.3.2.2021.1-8.

Mishra, D., Kumar, S., & Mishra, B. N. (2020). An overview of morpho-physiological, biochemical, and molecular responses of sorghum towards heavy metal stress. In P. de Voogt (Ed.) Reviews of environmental contamination and toxicology, 256 (pp. 155–177), https://doi.org/10.1007/398_2020_61.

Moreira, H., Pereira, S. I., Mench, M., Garbisu, C., Kidd, P., & Castro, P. M. L. (2021). Phytomanagement of metal(loid)-contaminated soils: Options, efficiency and value. Frontiers in Environmental Science, 9, 661423, https://doi.org/10.3389/fenvs.2021.661423.

Muratova, A. Y., Gorelova, S. V., Sungurtseva, I. Y., & Zelenova, N. A. (2020). Rhizospheric microbiomes of Sorghum bicolor grown on soils with anthropogenic polyelement anomalies. BIO Web of Conferences, 23, 03008, https://doi.org/10.1051/bioconf/20202303008.

Nemati, B., Baneshi, M. M., Akbari, H., Dehghani, R., & Mostafaii, G. (2024). Phytoremediation of pollutants in oil-contaminated soils by Alhagi camelorum: evaluation and modeling. Scientific Reports, 14(1), https://doi.org/10.1038/s41598-024-56214-y.

Osman, H. E., Fadhlallah, R. S., Al-Amoudi, W. M., Eid, E. M., & Abdelhafez, A. A. (2023). Phytoremediation Potential of sorghum as a bioenergy crop in PB-Amendment soil. Sustainability, 15(3), 2178, https://doi.org/10.3390/su15032178.

Perez-Rodriguez, M. M., Picolli, P., Anzuay, M. S., Baraldi, R., Neri, L., Taurian, T., Ureche, M. A. L., Segura, D. M., & Cohen, A. C. (2020). Native bacteria isolated from roots and rhizosphere of Solanum lycopersicum L. increase tomato seedling growth under a reduced fertilization regime. Scientific Reports, 10, 15642, https://doi.org/10.1038/s41598-020-72507-4.

Perlein, A., Bert, V., Desannaux, O., de Souza, F. M., Papin, A., Gaucher, R., Zdanevitch, I., & Meers, E. (2021). The use of sorghum in a phytoattenuation strategy: A field experiment on a TE-contaminated Site. Applied Sciences, 11, 3471, https://doi.org/10.3390/app11083471.

Qasem, N. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from wastewater: a comprehensive and critical review. Npj Clean Water, 4(1), https://doi.org/10.1038/s41545-021-00127-0.

Ramirez, V. D., De Jesus Perez Lopez, D., Quintero-Hernandez, V., Lopez, P., Juarez, G., Martinez, J. L., Munive, A., & Baez, A. (2024). Ionomic analysis of Prosopis laevigata response to heavy metals: phytoremediation potential determined by wavelength-dispersive X-ray fluorescence. International Journal of Environmental Science and Technology (Tehran), https://doi.org/10.1007/s13762-023-05297-7.

Roy, R., Samanta, S., Pandit, S., Naaz, T., Banerjee, S., Rawat, J., Chaubey, K. K., & Saha, R. P. (2023). An overview of bacteria-mediated heavy metal bioremediation strategies. Applied Biochemistry and Biotechnology, 196, 1712-1751. https://doi.org/10.1007/s12010-023-04614-7

Schneider, S. (2020). Interpreting compact letter displays and Tukey multiple comparisons from glmm. StackExhange, https://stats.stackexchange.com/questions/275832/interpreting-compact-letter-displays-and-tukey-multiple-comparisons-from-glmm.

Shahbandeh, M. (2021). Leading sorghum producers worldwide 2019/2020. Statista.com. https://www.statista.com/statistics/1134651/global-sorghum-production-by-country/.

Shaltout, K. H., Alamri, S., Alrumman, S. A., Hussain, A., Sewelam, N., & Eid, E. M. (2021). Evaluation of uptake of eight metals by Sorghum bicolor grown in arable soil combined with sewage sludge based on prediction models. Environmental Monitoring and Assessment, 193(8), https://doi.org/10.1007/s10661-021-09320-7.

Sierra, B. E. G., Guerrero, J. M., & Sokolski, S. (2021). Phytoremediation of heavy metals in tropical soils an overview. Sustainability, 13, 2574, https://doi.org/10.3390/su13052574.

Silva, C. J., de Lima, L. H. F., de Paiva, P. M., Maia, L. M., Rocha, R. E. O., de Souza, P. T. D., & Carvalho, D. A. C. A. (2020). An inexpensive and environmentally friendly staining method for semi-permanent slides from plant material probed using anatomical and computational chemistry analyses. Rodriguesa, 71, e01662018, http://dx.doi.org/10.1590/2175-7860202071024.

Silva, T. N., Thomas, J. B., Dahlberg, J., Rhee, S. Y., & Mortimer, J. C. (2021). Progress and challenges in sorghum biotechnology, a multipurpose feedstock for the bioeconomy. Journal of Experimental Botany, 73(3), 646–664, https://doi.org/10.1093/jxb/erab450.

Singh, S., Kumar, V., Dhanjal, D. S., Parihar, P., Ramamurthy, P. C., & Singh, J. (2022). 12 – Phytoremeidation of heavy metals, metalloids, and radionuclides: Prospects and challenges. Water. In V. Kumar, M. P. Shah and S. K. Shahi (Eds). Phytoremediation technology for the removal of heavy metals and other contaminants from soil and water (253-276). Elsevier, https://doi.org/10.1016/B978-0-323-85763-5.00024-6.

Stathatou, P. M., Athanasiou, C. E., Tsezos, M., Goss, J. W., Blackburn, C., Tourlomousis, F., Mershin, A., Sheldon, B. W., Padture, N. P., Darling, E. M., Gao, H., & Gershenfeld, N. (2022). Lead removal at trace concentrations from water by inactive yeast cells. Communications Earth and Environment, 3, 132, https://doi.org/10.1038/s43247-022-00463-0.

Stofejova, L., Fazekas, J., and Fazekasova, D. (2021). Analysis of heavy metal content in soil and plants in the dumping ground of Magnesite Mining Factory Jelsava-Lubenik (Slovakia). Sustainability, 13, 4508, https://doi.org/10.3390/su13084508.

Subramanian, A., Rakkammal, K., Rathinapriya, P., Rency, A. S., Satish, L., & Ramesh, M. (2020). Physiological and biochemical changes in sorghum under combined heavy metal stress: An adaptive defence against oxidative stress. Biocatalysis and Agricultural Biotechnology, 29, 101830, https://doi.org/10.1016/j.bcab.2020.101830.

Turkovskaya, O. V., Muratova, A. Y., Dubrovskaya, E., Bondarenkova, A., & Lyubun, E. V. (2020). Phytoremediation potential of sorghum bicolor for soil decontamination from oil hydrocarbons and heavy metals. Agrarnyj Naucnyj Zurnal, 12, 50–54, https://doi.org/10.28983/asj.y2020i12pp50-54.

Ullah, N., Rehman, M. U., Ahmad, B., Ali, I., Younas, M., Aslam, M. S., Rahman, A., Taheri, E., Fatehizadeh, A., & Rezakazemi, M. (2022). Assessment of heavy metals accumulation in agricultural soil, vegetables and associated health risks. PloS One, 17(6), e0267719, https://doi.org/10.1371/journal.pone.0267719.

Umar, Z. D., Aminu, M., & Yahaya, Y. R. (2020a). Survival response of consortium isolates from diesel contaminated soil within Katsina State Nigeria. International Journal of Environment, 9(2), 51–66. http://dx.doi.org/10.3126/ije.v9i2.32516

Umar, Z. D., Musa, A., & Yunusa, Y.R. (2020b). Optimization of diesel biodegrading conditions using response surface methodology based on central composite design. Polycyclic Aromatic Compounds, 40(4), 1-11, https://doi.org/10.1080/10406638.2020.1823859.

Xie, M., Li, H., Zhu, Y., Xue, J., You, Q., Jin, B., & Shi, Z. (2021). Predicting bioaccumulation of potentially toxic element in soil-rice systems using multi-source data and machine learning methods: A case study of an industrial city in Southeast China. Land, 10, 558, https://doi.org/10.3390/land10060558.

Yahaya, S. M., Abubakar, F., & Abdu, N. (2021). Ecological risk assessment of heavy metal-contaminated soils of selected villages in Zamfara State, Nigeria. SN Applied Sciences, 3(168), 1-13, https://doi.org/10.1007/s42452-021-04175-6.

Yang, Y., Liu, Y., Li, Z., Wang, Z., Li, C., & Wei, H. (2020). Significance of soil microbe in microbial-assisted phytoremediation: an effective way to enhance phytoremediation of contaminated soil. International Journal of Environmental Science and Technology, 17, 2477-2484. https://doi.org/10.1007/s13762-020-02668-2.

Yu, K. M. J., Oliver, J., McKinley, B., Weers, B., Fabich, H. T., Evetts, N., Conradi, M. S., Altobelli, S. A., Marshall-Colon, A., & Mullet, J. E. (2022). Bioenergy sorghum stem growth regulation: intercalary meristem localization, development, and gene regulatory network analysis. Plant Journal, 112(2), 476–492, https://doi.org/10.1111/tpj.15960.

Yukun, G., Jianghui, C., Genzeng, R., Shilin, W., Puyuan, Y., Congpei, Y., Hongkai, L., & Jinhua, C. (2021). Changes in the root-associated bacteria of sorghum are driven by the combined effects of salt and sorghum development. Environmental Microbiome, 16, 14, https://doi.org/10.1186/s40793-021-00383-0.

Yunusa, Y. R., & Umar, Z. D. (2021). Effective microbial bioremediation via the multi-OMICs approach: An overview of trends, problems and prospects. UMYU Journal of Microbiology Research, 6(1), 127-145. https://doi.org/10.47430/ujmr.2161.017

Zhao, X., Jiao, C., Yang, F., Zhang, Z., & Ma, Y. (2023). Analytical techniques for detection of nanomaterials in soil–plant system. In P. Zhang, I. Lynch, J. C. White & R. D. Handy (Eds.). Nano-enabled Sustainable and Precision Agriculture (pp. 391–417). https://doi.org/10.1016/b978-0-323-91233-4.00016-8

Downloads

Published

2024-10-30

How to Cite

Yunusa, Y. R., Umar, Z. D., & Kabir, K. (2024). Successful phytoremediation of simulated steel rolling industry heavy metals-contaminated soils using a Sorghum bicolor cultivar from Riko, Katsina, Nigeria. Spektrum Industri, 22(2), 193–212. https://doi.org/10.12928/si.v22i2.202