Analysis of Visitor Perceptions of Malang City Thematic Parks using a Text Mining Approach
DOI:
https://doi.org/10.12928/si.v23i1.276Keywords:
Text mining, Place branding, Text summarization, Thematic parksAbstract
Ruang Terbuka Hijau (RTH) play a crucial role in urban environments, not only supporting nature conservation but also fostering social interaction and contributing to economic growth. City parks, as representations of GOS, can be enhanced through thematic development and place branding to improve user engagement and functional value. This study aims to analyze visitor perceptions of thematic parks by identifying high-frequency keywords extracted from user-generated reviews. Text mining techniques were employed using Term Frequency-Inverse Document Frequency (TF-IDF) and Term Frequency-Relevance Frequency (TF-RF) methods, followed by text summarization using Cosine Similarity and Maximum Marginal Relevance (MMR). These methods effectively process large volumes of unstructured data to reveal meaningful insights. The analysis focused on three parks with the highest number of reviews: Alun-Alun Kota Malang (945 reviews), Taman Merjosari (552 reviews), and Alun-Alun Tugu (462 reviews). Keyword analysis showed prominent terms such as ‘tugu’, ‘olahraga’ (sports), and ‘anak’ (children) under both TF-IDF and TF-RF methods, with TF-RF emphasizing more context-specific vocabulary. Results indicate that Alun-Alun Tugu is perceived as a comfortable space near government offices featuring a lotus pond, Taman Merjosari is recognized for its sports facilities, and Alun-Alun Malang is identified as a child-friendly park with fountains. The study offers place branding recommendations by analyzing word associations in summarized user feedback. This study can contribute valuable insights for governments, architects, and urban designers in developing thematic parks that better reflect and accommodate user preferences.
References
Agustian, E., & Razali, G. (2023). Pengembangan Kota Berbasis City Branding: Pendukung Investasi, Komunikasi Pariwisata, dan Pemasaran (1st ed.). CV Seribu Bintang. https://www.seribubintang.web.id/index.php?p=show_detail&id=105
Ahmad Gozali, H., & Alfan Rosid, M. (2020). Klasifikasi Keluhan Mahasiswa dengan Metode Naive Bayes dan Sastrawi. Network, and Computer Science) |, 3(1), 22–26. https://joincs.umsida.ac.id/index.php/joincs/article/download/711/1709/
Assidyk, A. N., Setiawan, E. B., & Kurniawan, I. (2020). Analisis Perbandingan Pembobotan TF-IDF dan TF-RF pada Trending Topic di Twitter dengan Menggunakan Klasifikasi K-Nearest Neighbor. E-Proceeding of Engineering, 7(2), 7773–7781. https://openlibrarypublications.telkomuniversity.ac.id/index.php/engineering/article/view/12794
Ayu, A. P. (2019). Peran Ruang Terbuka Hijau dalam Citra Kota Studi Kasus: Taman Suropati, Jakarta. Jurnal Ilmiah Desain & Konstruksi, 18(1), 53–66. http://dx.doi.org/10.35760/dk.2019.v18i1.1958
Fikriyah, Purnamasari, W. D., & Hasyim, A. W. (2021). Persepsi Pengguna Taman terhadap Kualitas Penggunaan Taman Kota di Kecamatan Klojen. Planning for Urban Region and Environment, 10(1), 157–168. https://purejournal.ub.ac.id/index.php/pure/article/view/120
Ghofany, M. S. Al, Dwiyansaputra, R., Bimantoro, F., & Khairunnas. (2022). Indonesian SMS Spam Detection Using TF-RF Feature Weighting Method and Support Vector Machine Classifier. In Proceedings of the First Mandalika International Multi-Conference on Science and Engineering 2022, MIMSE 2022 (Informatics and Computer Science) (Vol. 1, Issue 1). Atlantis Press International BV. https://doi.org/10.2991/978-94-6463-084-8
Harmandini, K. P., & L, K. M. (2024). Analysis of TF-IDF and TF-RF Feature Extraction on Product Review Sentiment. 8(2), 929–937. Doi: 10.33395/sinkron.v8i2.13376
Hickman, L., Thapa, S., Tay, L., Cao, M., & Srinivasan, P. (2022). Text Preprocessing for Text Mining in Organizational Research: Review and Recommendations. Organizational Research Methods, 25(1), 114–146. https://doi.org/10.1177/1094428120971683
Irfan, A. (2023). Disbudpar: Jumlah pengunjung di Taman Tematik Tangerang meningkat.
Juwanda, V., & Widiastuti, D. A. (2023). Dampak Kepuasan Pengunjung sebagai Mediasi antara Hubungan Experiental Marketing terhadap Revisit Intention (studi kasus pada pariwisata di Pantai Carocok dan kawasan Mandeh). Journal of Entrepreneurship, Management and Industry. https://journal.bakrie.ac.id/index.php/JEMI/article/view/2430
Kasanah, A. N., Muladi, M., & Pujianto, U. (2019). Penerapan Teknik SMOTE untuk Mengatasi Imbalance Class dalam Klasifikasi Objektivitas Berita Online Menggunakan Algoritma KNN. Jurnal RESTI (Rekayasa Sistem Dan Teknologi Informasi), 3(2), 196–201. https://doi.org/10.29207/resti.v3i2.945
Kotu, V., & Deshpande, B. (2019). Data Science Concepts and Practice: Second Edition. In G. Jones (Ed.), Data Science (2nd ed.). Jonathan Simpson. https://doi.org/10.1016/c2017-0-02113-4
Kurniawan, A., & Humaidy, M. I. (2022). Penerapan Algoritma Maximum Marginal Relevance Dalam Peringkasan Teks Secara Otomatis. Bulletin of Data Science, 1(2), 49–56. https://ejurnal.seminar-id.com/index.php/bulletinds/article/view/1358
Larasati, A., Editya, R. P., Chen, Y.-W., & Darmawan, V. E. B. (2023). The Effect of Data Splitting Ratio and Vectorizer Method on the Accuracy of the Support Vector Machine and Naïve Bayes Model to Perform Sentiment Analysis. 2023 8th International Conference on Electrical, Electronics and Information Engineering (ICEEIE), 1–6. DOI: 10.1109/ICEEIE59078.2023.10334755
Levochkina, N. A. (2017). Theme Parks and Their Contribution to the Development of Territories. IOP Conference Series: Earth and Environmental Science, 13(8), 41–48. https://doi.org/10.1088/1755-1315/204/1/012025
Luthfi, M. F., & Lhaksamana, K. M. (2020). Implementation of TF-IDF Method and Support Vector Machine Algorithm for Job Applicants Text Classification. Jurnal Media Informatika Budidarma , 4(4), 1181–1186. https://doi.org/10.30865/mib.v4i4.2276
Manjari, K. U., Rousha, S., Sumanth, D., & Sirisha Devi, J. (2020). Extractive Text Summarization from Web pages using Selenium and TF-IDF algorithm. Proceedings of the 4th International Conference on Trends in Electronics and Informatics, ICOEI 2020, Icoei, 648–652. https://doi.org/10.1109/ICOEI48184.2020.9142938
Mihardja, E. J., Mulyasari, P., Widiastuti, T., & Bintoro, B. K. (2020). Strategi City Branding (Issue 1). Penerbit Universitas Bakrie. https://slims.bakrie.ac.id/index.php?p=show_detail&id=3791
Munawir, Koerniawan, M. D., & Dewancker, B. J. (2019). Visitor perceptions and effectiveness of place branding strategies in thematic parks in Bandung City using text mining based on google maps user reviews. Sustainability (Switzerland), 11(7), 1–20. https://doi.org/10.3390/SU11072123
Nugroho, F. I., Setyono, D. A., & Kurniawan, E. B. (2022). Identifikasi Kriteria Layak Huni Permukiman Di Kota Malang. Tata Kota Dan Daerah, 14(1), 1–8. https://doi.org/10.21776/ub.takoda.2022.014.01.1
Nurahaliza, F. N. U., & Mulyadi, N. F. U. (2022). Aplikasi Sistem Informasi Dan Pemetaan Daerah Pariwisata Berbasis Web. Jurnal Tika, 7(1), 48–54. https://doi.org/10.51179/tika.v7i1.1085
Oliveira, T., Araujo, B., & Tam, C. (2020). Why do People Share Their Travel Experiences on Social Media? In Tourism Management (Vol. 78, pp. 1–14). https://doi.org/10.1016/j.tourman.2019.104041
Rista, M., & Siregar, A. (2019). Komunikasi Kota Ruang Publik Taman Sebagai Pembentuk Citra Kota Hijau. Jurnal Komunikasi Pembangunan, 17(1), 102–113. https://doi.org/10.46937/17201926595
Saraswati, N. F., Indriati, & Perdana, R. S. (2018). Peringkasan Teks Otomatis Menggunakan Metode Maximum Marginal Relevance Pada Hasil Pencarian Sistem Temu Kembali Informasi Untuk Artikel Berbahasa Indonesia. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 2(11), 5494–5502. https://doi.org/10.1016/s1010-6030(01)00380-x
Sari, Y., Baskara, A. R., Prakoso, P. B., Royani, N., Mangkurat, U. L., & Korespondensi, P. (2022). Perbandingan Metode Pembobotan TF-RF Dan TF-IDF dengan dikombinasikan Dengan Weighted Tree Similarity Comparison of Tf-Rf and . Weighting Methods Tf-Idf With Combination With Weighted Tree Similarity for a Book. 9(3). https://doi.org/10.25126/jtiik.202295709
Sari, Y., Baskara, A. Ri., Prakoso, P. B., & Royani, N. (2022). Perbandingan Metode Pembobotan Tf-Rf Dan Tf-Idf Dikombinasikan Dengan Weighted Tree Similarity Untuk Sistem Rekomendasi Buku. Jurnal Teknologi Informasi Dan Ilmu Komputer, 9(6), 1323–1332. https://doi.org/10.25126/jtiik.2022935709
Satria, F., & Fadillah, F. (2021). Konsep City Branding dan Identifikasi Nilai Lokal pada Kota-Kota Indonesia dalam Mendukung Nation Branding Indonesia. Jurnal Desain, 8(2), 147. https://doi.org/10.30998/jd.v8i2.8118
Siregar, J. S. (2023). Perbandingan Metode Pembobotan Kata TF-IDF dengan TF-RF pada Peringkasan Teks Berita Otomatis dengan Metode Maximum Marginal Relevance. Institut Teknologi Sumatera. https://repository.itera.ac.id/depan/submission/SB2305310009
Thakur, K., & Kumar, V. (2022). Application of Text Mining Techniques on Scholarly Research Articles: Methods and Tools. New Review of Academic Librarianship, 28(3), 279–302. https://doi.org/10.1080/13614533.2021.1918190
Wihardjo, P. H. (2020). Upaya Pemerintah Kota Malang Dalam Menyediakan Ruang Terbuka Hijau (Studi di Dinas Lingkungan Hidup Kota Malang). Universitas Katolik Widya Karya. http://repository.ukwk.ac.id/handle/123456789/503

Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Nur Izza Vania, Aisyah Larasati, Yuh-Wen Chen, Nikmatus Sholihah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.