Modeling Public Transportation Policy Using Macroscopic Social Media Data Mining

Authors

  • Dwi Adi Purnama Departement of Industrial Engineering, Universitas Islam Indonesia, Yogyakarta, 55584, Indonesia
  • Zahid Anugrah Muzaffar Rana Departement of Industrial Engineering, Universitas Islam Indonesia, Yogyakarta, 55584, Indonesia
  • Distian Pinkan Lumi Departement of Industrial Engineering, Universitas Islam Indonesia, Yogyakarta, 55584, Indonesia
  • Inggil Tahta Haritza Departement of Industrial Engineering, Universitas Islam Indonesia, Yogyakarta, 55584, Indonesia
  • M. Arif Fadillah Departement of Industrial Engineering, Universitas Islam Indonesia, Yogyakarta, 55584, Indonesia

DOI:

https://doi.org/10.12928/si.v23i2.327

Keywords:

Fine-Tuning, indoRoBERTa, Modeling transportation service, Public policy, Twitter

Abstract

Transportation policies must be created by the government, especially in countries with high population expansion, transportation services are used more to meet daily necessities. Conventional surveys to gauge public opinion are costly and slow; social media offers a macro-level proxy that can complement official data. This study employs large-scale online data mining to build decision support for transportation policy. We collected 19,806 Indonesia-based Twitter posts referencing public transport, private transport, sustainable mobility, and electric vehicles. After preprocessing, we fine-tuned IndoRoBERTa for sentiment classification and applied Latent Dirichlet Allocation for topic modeling. The sentiment model achieved 81.17% accuracy, with precision, recall, and F1-scores all above 0.80. Positive discourse concentrated on private vehicles, public transit, multimodal travel, and environmentally responsible practices, with many users endorsing eco-friendly private cars. Negative discourse emphasized severe air pollution, frequently attributing risk to emissions from private automobiles in Jakarta. Translating these insights into policy, we propose expanding electric-vehicle charging infrastructure, implementing vehicle buy-back/retirement programs, establishing low-emission zones, and promoting biofuels. The results demonstrate that macroscopic social media analytics can surface actionable public preferences and pain points, enabling near-real-time monitoring to inform adaptive and equity-oriented transportation policies. This framework provides a scalable approach for governments in rapidly growing contexts to align service provision with community sentiment while advancing sustainability goals.

References

Ahmad, G. N., Fatima, H., Abbas, M., Rahman, O., & Imdadullah. (2022). Mixed machine learning approach for efficient prediction of human heart disease by identifying the numerical and categorical features. In Applied Sciences. mdpi.com. https://www.mdpi.com/2076-3417/12/15/7449

Amilia, N., Palinrungi, Z., Vanany, I., & Arief, M. (2022). Designing an optimized electric vehicle charging station infrastructure for urban area: A case study from indonesia. 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC). https://ieeexplore.ieee.org/abstract/document/9922278/

Anugerah, A. R., Muttaqin, P. S., & Purnama, D. A. (2021). Effect of large-scale social restriction (PSBB) during COVID-19 on outdoor air quality: Evidence from five cities in DKI Jakarta Province, Indonesia. Environmental Research, 197, 111164. https://doi.org/10.1016/j.envres.2021.111164

Arifani, E. N., & Mahfudz, M. S. (2024). Corn Agroindustry Supply Chain Management in Indonesia: Increasing Added Value and Competitiveness through the Hayami Method. Spektrum Industri. https://journal3.uad.ac.id/index.php/spektrum/article/view/241

Awewomom, J., Dzeble, F., Takyi, Y. D., Ashie, W. B., Ettey, E. N. Y. O., Afua, P. E., Sackey, L. N. A., Opoku, F., & Akoto, O. (2024). Addressing global environmental pollution using environmental control techniques: a focus on environmental policy and preventive environmental management. Discover Environment, 2(1), 8. https://doi.org/10.1007/s44274-024-00033-5

Balla, S. N., Pani, A., Sahu, P. K., & Gonzalez-Feliu, J. (2023). Examining shifts in public discourse on electric mobility adoption through Twitter data. Transportation Research Part D: Transport and Environment, 121, 103843. https://doi.org/10.1016/j.trd.2023.103843

Balwan, W. K., & Kour, S. (2021). A Systematic review of biofuels: the cleaner energy for cleaner environment. In Indian Journal of Scientific Research. researchgate.net. https://www.researchgate.net/profile/Wahied-Balwan-2/publication/354322529_A_Systematic_Review_of_Biofuels_The_Cleaner_Energy_for_Cleaner_Environment/links/6130efa638818c2eaf7a303c/A-Systematic-Review-of-Biofuels-The-Cleaner-Energy-for-Cleaner-Environment.pdf

Bleviss, D. L. (2021). Transportation is critical to reducing greenhouse gas emissions in the United States. WIREs Energy and Environment, 10(2). https://doi.org/10.1002/wene.390

Delmonte, E., Kinnear, N., Jenkins, B., & Skippon, S. (2020). What do consumers think of smart charging? Perceptions among actual and potential plug-in electric vehicle adopters in the United Kingdom. Energy Research & Social Science, 60, 101318. https://doi.org/10.1016/j.erss.2019.101318

Ebadian, M., Dyk, S. van, McMillan, J. D., & Saddler, J. (2020). Biofuels policies that have encouraged their production and use: An international perspective. Energy Policy. https://www.sciencedirect.com/science/article/pii/S0301421520306182

Farda, M., & Lubis, H. R. (2018). Transportation system development and challenge in jakarta metropolitan area, indonesia. International Journal of Sustainable Transportation Technology. https://unijourn.com/article/5cd3cf6cb2f6bd305742ba42/5ae99ad07348a8567766abe2/2.html

Graham, J. (2020). Twists and turns: New business models. Electric vehicles 101: A series of transport notes on electric vehicle trends and opportunities from IFC. In World Bank group. Twists-and-Turns-New-Business-Models. https://www.ifc.org/content/dam/ifc/doc/mgrt/ifc-transportnotes-twist-turns-final.pdf

Greene, D. L., Kontou, E., Borlaug, B., Brooker, A., & Muratori, M. (2020). Public charging infrastructure for plug-in electric vehicles: What is it worth? Transportation Research Part D: Transport and Environment, 78, 102182. https://doi.org/10.1016/j.trd.2019.11.011

Guddaraddi, A., Singh, A., Amrutha, G., Saikanth, D. R. K., Kurmi, R., Singh, G., Chowdhury, M., & Singh, B. V. (2023). Sustainable biofuel production from agricultural residues an eco-friendly approach: a review. In Int J Environ Clim Change. https://journalijecc.com/index.php/IJECC/article/view/2956

Hidayati, I., Tan, W., & Yamu, C. (2021). Conceptualizing Mobility Inequality: Mobility and Accessibility for the Marginalized. Journal of Planning Literature, 36(4), 492–507. https://doi.org/10.1177/08854122211012898

Hindayanti, H., Septiani, W., & Maulidya, R. (2024). Employee Performance Assessment Model in Survey Service Companies Using Analytical Hierarchy Process and Naive Bayes. Spektrum Industri. https://journal3.uad.ac.id/index.php/spektrum/article/view/150

Islamey, J., Jonathan, V., Nurzaki, M., & Lucky, H. (2024). Comparative Analysis of Encoder-Based Pretrained Models: Investigating the Performance of BERT Variants in Indonesian Question-Answering. International Conference on Artificial Intelligence, Blockchain, Cloud Computing, and Data Analytics. https://ieeexplore.ieee.org/abstract/document/10704260/

Jeong, B., Yoon, J., & Lee, J.-M. (2019). Social media mining for product planning: A product opportunity mining approach based on topic modeling and sentiment analysis. International Journal of Information Management, 48, 280–290. https://doi.org/10.1016/j.ijinfomgt.2017.09.009

Massar, M., Reza, I., Rahman, S. M., Abdullah, S. M. H., & Jamal, A. (2021). Impacts of autonomous vehicles on greenhouse gas emissions positive or negative? In International Journal of Environ Science and Engineering. mdpi.com. https://www.mdpi.com/1660-4601/18/11/5567

Natalia, Y., Rahman, I., & Hidayatno, A. (2020). Conceptual Model for Understanding the Policy Challenges of Electric Vehicle Adoption in Indonesia. 2020 The 6th International Conference on Industrial and Business Engineerin, 113–117. https://doi.org/10.1145/3429551.3429557

Padma, T., Visweshvar, R., Tamilarasan, K., & Bhadrinath, C. J. (2024). Dynamic YouTube Comment Sentiment Analysis with Supervised Fine-Tuned BERT. 2024 International Conference on Cognitive Robotics and Intelligent Systems. https://ieeexplore.ieee.org/abstract/document/10533926/

Patil, P. (2021). Sustainable transportation planning: Strategies for reducing greenhouse gas emissions in urban areas. In Empirical Quests for Management Essences.

Prawesti, G., Supriatna, A., Isniah, S., & Khoirunisa, A. (2025). Determination of Cultural Tourism Development Strategy in the Special Capital Region of Jakarta Using the Dynamic Model Method. Spektrum Industri. https://journal3.uad.ac.id/index.php/spektrum/article/view/284

Purnama, D. A., Subagyo, & Masruroh, N. A. (2023). Online data-driven concurrent product-process-supply chain design in the early stage of new product development. Journal of Open Innovation: Technology, Market, and Complexity, 9(3), 100093. https://doi.org/10.1016/j.joitmc.2023.100093

Ribeiro, F. N. D., Umezaki, A. S., Chiquetto, J. B., & Ueno, H. M. (2021). Impact of different transportation planning scenarios on air pollutants, greenhouse gases and heat emission abatement. Science of The Total Environment. https://www.sciencedirect.com/science/article/pii/S0048969721017769

Richter, D., & Anke, J. (2021). Exploring Potential Impacts of Self-Sovereign Identity on Smart Service Systems. Business Information Systems, 105–116. https://doi.org/10.52825/bis.v1i.68

Saputra, M. C., & Andajani, E. (2023). Analysis of Factors Influencing Intention to Adopt Battery Electric Vehicle in Indonesia. ADI Journal on Recent Innovation (AJRI), 5(2), 100–109. https://doi.org/10.34306/ajri.v5i2.993

Setiawan, A. D., Zahari, T. N., Purba, F. J., Moeis, A. O., & Hidayatno, A. (2022). Investigating policies on increasing the adoption of electric vehicles in Indonesia. Journal of Cleaner Production, 380, 135097. https://doi.org/10.1016/j.jclepro.2022.135097

Soehodho, S. (2017). Public transportation development and traffic accident prevention in Indonesia. In IATSS research. Elsevier. https://www.sciencedirect.com/science/article/pii/S0386111216300085

Subagyo, Purnama, D. A., Masruroh, N. A., & Pratama, R. R. (2024). Modeling Dynamic Consumer Preferences in Product Attributes for Social Media-Based Product Improvement Planning. Malaysian Journal of Consumer and Family Economics, 32(1), 104–140. https://doi.org/10.60016/majcafe.v32.05

Subiantoro, H., & Maharani, A. E. P. (2024). Analisis Perpres Nomor 55 tahun 2019 Terkait Program Kendaraan Listrik Dalam Rangka Mewujudkan Transportasi Ramah Lingkungan. Jurist-Diction. https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=27218392&AN=176577758&h=N1VqkOdA%2Flc7GbNYnIuUGCpIf3w7eTSBg4mN%2FBTnbpavRdqXpH60oPjmBxu8PLDl4QBTIyrxLxrU2%2FazUeI9lg%3D%3D&crl=c

Sukarno, I., Matsumoto, H., & Susanti, L. (2016). Transportation energy consumption and emissions-a view from city of Indonesia. In Future Cities and Environment. Springer. https://doi.org/10.1186/s40984-016-0019-x

Wang, A., Wang, J., Zhang, R., & Cao, S. J. (2024). Mitigating urban heat and air pollution considering green and transportation infrastructure. Transportation Research Part A: Policy and Practice. https://www.sciencedirect.com/science/article/pii/S0965856424001277

Wang, J., Lai, J.-Y., & Lin, Y.-H. (2023). Social media analytics for mining customer complaints to explore product opportunities. Computers & Industrial Engineering, 178, 109104. https://doi.org/10.1016/j.cie.2023.109104

Widarmanti, T., Widodo, M. P., Ramadhani, D. P., & Danlami, M. (2022). Text emotion detection: Discover the meaning behind YouTube comments using indo RoBERTa. 2022 International Conference on Advanced Creative Network and Intelligent Systems. https://ieeexplore.ieee.org/abstract/document/10055265/

Yacouby, R., & Axman, D. (2020). Probabilistic extension of precision, recall, and f1 score for more thorough evaluation of classification models. Proceedings of the First Workshop on Evaluation and Comparison of NLP Systems. https://aclanthology.org/2020.eval4nlp-1.9/

Zhang, Y., Chen, K., Weng, Y., Chen, Z., Zhang, J., & Hubbard, R. (2022). An intelligent early warning system of analyzing Twitter data using machine learning on COVID-19 surveillance in the US. Expert Systems with Applications, 198, 116882. https://doi.org/10.1016/j.eswa.2022.116882

Downloads

Published

2025-10-31

How to Cite

Adi Purnama, D., Anugrah Muzaffar Rana, Z., Pinkan Lumi, D., Tahta Haritza, I., & Fadhillah, M. A. (2025). Modeling Public Transportation Policy Using Macroscopic Social Media Data Mining. Spektrum Industri, 23(2), 192–204. https://doi.org/10.12928/si.v23i2.327

Issue

Section

Industrial Management and Entrepreneurship