Open Field Layout Problem Using Hybrid Approaches: A Systematic Review
DOI:
https://doi.org/10.12928/si.v23i2.439Keywords:
Facility layout problem, Hybrid, OFLP, Open-field layout, ReviewAbstract
The Open Field Layout Problem (OFLP) is a free-configuration layout problem characterized by the absence of floor constraints and an unlimited number of potential solutions. This systematic literature review analyzed over 3,000 Scopus-indexed articles using the keyword "facility layout problem" and related terms, identifying 154 studies that applied hybrid approaches. Terms such as two-stage, multi-stage, or similar variations were classified accordingly. The review revealed that OFLP is not a monolithic concept but comprises five principal types: (1) layouts without aisles or floor boundaries, (2) tightly packed layouts with minimal spacing, (3) layouts with aisles and large residual space, (4) layouts with aisles and floor boundaries, and (5) layouts with aisles but no floor boundaries. The first type is most commonly addressed, while the fifth remains underexplored. This classification highlights a critical research gap and points to opportunities for advancing from low- to high-level hybrid strategies
References
Al-Saleh, M. A., Mir, M., & Hassanin, A. (2015). Comparison of enhanced constructive layout optimization technique with Tabu-search and Particle Swarm Optimization methodologies. 2015 International Conference on Industrial Engineering and Operations Management (IEOM), 1–7. https://doi.org/10.1109/IEOM.2015.7093781
Alizadeh, R., Allen, J. K., & Mistree, F. (2020). Managing computational complexity using surrogate models: a critical review. Research in Engineering Design. https://doi.org/10.1007/s00163-020-00336-7
Allahyari, M. Z., & Azab, A. (2018). Mathematical modeling and multi-start search simulated annealing for unequal-area facility layout problem. Expert Systems with Applications, 91, 46–62. https://doi.org/10.1016/j.eswa.2017.07.049
Amaral, A. R. S., & Letchford, A. N. (2013). A polyhedral approach to the single row facility layout problem. Mathematical Programming, 141(1–2), 453–477. https://doi.org/10.1007/s10107-012-0533-z
Anjos, M. F., & Vieira, M. V. C. (2016). An improved two-stage optimization-based framework for unequal-areas facility layout. Optimization Letters, 10(7), 1379–1392. https://doi.org/10.1007/s11590-016-1008-6
Asl, A. D., & Wong, K. Y. (2015). Solving unequal area static facility layout problems by using a modified genetic algorithm. 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA), 302–305. https://doi.org/10.1109/ICIEA.2015.7334129
Aurich, P., Speckmann, M., Booning, C., & Stonis, M. (2021). A two-stage Tabu Search for multi-objective facility layout problem. repo.uni-hannover.de. https://repo.uni-hannover.de/handle/123456789/11389
Benitez, G. B., Da Silveira, G. J. C., & Fogliatto, F. S. (2019). Layout Planning in Healthcare Facilities: A Systematic Review. HERD: Health Environments Research & Design Journal, 12(3), 31–44. https://doi.org/10.1177/1937586719855336
Besbes, M., Zolghadri, M., Costa Affonso, R., Masmoudi, F., & Haddar, M. (2020). A methodology for solving facility layout problem considering barriers: genetic algorithm coupled with A search. Journal of Intelligent Manufacturing, 31(3), 615–640. https://doi.org/10.1007/s10845-019-01468-x
Bouraima, M. B., Qian, S., & Kiptum, C. K. (2025). Evaluating the impacts of supply chain management practices on performance of the tea sub sector in developing country. Yugoslav Journal of Operations. https://doiserbia.nb.rs/Article.aspx?id=0354-02432400044B
Burggraf, P., Wagner, J., & Heinbach, B. (2021). Bibliometric Study on the Use of Machine Learning as Resolution Technique for Facility Layout Problems. IEEE Access, 9, 22569–22586. https://doi.org/10.1109/ACCESS.2021.3054563
Choi, M., Kim, S. H., & Chung, H. (2017). Optimal shipyard facility layout planning based on a genetic algorithm and stochastic growth algorithm. Ships and Offshore Structures, 12(4), 486–494. https://doi.org/10.1080/17445302.2016.1176294
Derakhshan Asl, A., & Wong, K. Y. (2017). Solving unequal-area static and dynamic facility layout problems using modified particle swarm optimization. Journal of Intelligent Manufacturing, 28(6), 1317–1336. https://doi.org/10.1007/s10845-015-1053-5
Forghani, K., Fatemi Ghomi, S. M. T., & Kia, R. (2020). Solving an integrated cell formation and group layout problem using a simulated annealing enhanced by linear programming. Soft Computing, 24(15), 11621–11639. https://doi.org/10.1007/s00500-019-04626-8
Gonçalves, J. F., & Resende, M. G. C. (2015). A biased random-key genetic algorithm for the unequal area facility layout problem. European Journal of Operational Research, 246(1), 86–107. https://doi.org/10.1016/j.ejor.2015.04.029
Grobelny, J., & Michalski, R. (2020). Effects of scatter plot initial solutions on regular grid facility layout algorithms in typical production models. Central European Journal of Operations Research, 28(2), 601–632. https://doi.org/10.1007/s10100-019-00632-1
Guan, C., Zhang, Z., Liu, S., & Gong, J. (2019). Multi-objective particle swarm optimization for multi-workshop facility layout problem. Journal of Manufacturing Systems, 53, 32–48. https://doi.org/10.1016/j.jmsy.2019.09.004
Hasda, R. K., Bhattacharjya, R. K., & Bennis, F. (2017). Modified genetic algorithms for solving facility layout problems. International Journal on Interactive Design and Manufacturing (IJIDeM), 11(3), 713–725. https://doi.org/10.1007/s12008-016-0362-z
Heragu, S. S. (2018). Facilities design. taylorfrancis.com. https://doi.org/10.1201/9781315382647
Hosseini-Nasab, H., Fereidouni, S., & Ghomi, S. M. T. F. (2018). Classification of facility layout problems: a review study. The International Journal of Advanced Manufacturing Technology. https://doi.org/10.1007/s00170-017-0895-8
Isnaini, W., Masruroh, N. A., & Dharma, I. B. (2025). Dynamic planning approach of facility layout from industry perspectives: A systematic literature review. Production Engineering Archives, 31(1), 27–40. https://doi.org/10.30657/pea.2025.31.3
Jeong, D., & Seo, Y. (2018). Golden Section Search and Hybrid Tabu Search-Simulated Annealing For Layout Design Of Unequal-Sized Facilities With Fixed Input. International Journal of Industrial …. https://search.ebscohost.com/login.aspx?direct=true&profile=ehost&scope=site&authtype=crawler&jrnl=10724761&AN=132768168&h=8qT3lmasHpmjCY4JeAOPOjZSn9sVO0v5xZ%2BIqnAvBm0MHLlqL1a55DZVoQ%2FzCrO670k3dhyVZ9%2BN%2FjMWAbzTDw%3D%3D&crl=c
Jerin Leno, I., Saravana Sankar, S., & Ponnambalam, S. G. (2018). MIP model and elitist strategy hybrid GA–SA algorithm for layout design. Journal of Intelligent Manufacturing, 29(2), 369–387. https://doi.org/10.1007/s10845-015-1113-x
Jiang, F., Li, L., Tang, Y., Zhang, H., & Liu, X. (2023). A Facility Layout Algorithm for Logistics Scenarios Driven by Transport Lines. Applied Sciences, 13(12), 7215. https://doi.org/10.3390/app13127215
Jiang, F., Li, L., Zhu, J., & Liu, X. (2023). A Hybrid Layout Method Based on GPU for the Logistics Facility Layout Problem (pp. 570–579). https://doi.org/10.1007/978-981-99-2385-4_43
Jin, Y., Wang, H., Chugh, T., Guo, D., & Miettinen, K. (2018). Data-driven evolutionary optimization: An overview and case studies. IEEE Transactions on Evoluationary Computation. https://ieeexplore.ieee.org/abstract/document/8456559/
Junior, W. A., Azzolini, F. G. P., Mundim, L. R., Porto, A. J. V., & Amani, H. J. S. (2023). Shipyard facility layout optimization through the implementation of a sequential structure of algorithms. Heliyon, 9(6), e16714. https://doi.org/10.1016/j.heliyon.2023.e16714
Kanike, U. K. (2023). Factors disrupting supply chain management in manufacturing industries. Journal of Supply Chain Management Science. https://journals.open.tudelft.nl/jscms/article/view/6986
Karateke, H., Sahin, R., & Niroomand, S. (2022). A hybrid Dantzig-Wolfe decomposition algorithm for the multi-floor facility layout problem. Expert Systems with Applications, 206, 117845. https://doi.org/10.1016/j.eswa.2022.117845
Kaveh, A., & Rastegar Moghaddam, M. (2017). A hybrid WOA-CBO algorithm for construction site layout planning problem. Scientia Iranica, 0–0. https://doi.org/10.24200/sci.2017.4212
Klausnitzer, A., & Lasch, R. (2019). Optimal facility layout and material handling network design. Computers & Operations Research, 103, 237–251. https://doi.org/10.1016/j.cor.2018.11.002
Kovacs, G., & Kot, S. (2017). Facility layout redesign for efficiency improvement and cost reduction. Journal of Applied Mathematics and Computational Mechanics, 16(1), 63–74. https://doi.org/10.17512/jamcm.2017.1.06
Krajcovic, M., Hancinsky, V., Dulina, L., Grznar, P., Gaso, M., & Vaculik, J. (2019). Parameter setting for a genetic algorithm layout planner as a toll of sustainable manufacturing. In Sustainability. mdpi.com. https://www.mdpi.com/2071-1050/11/7/2083
Kulturel-Konak, S. (2017). A Matheuristic Approach for Solving the Dynamic Facility Layout Problem. Procedia Computer Science, 108, 1374–1383. https://doi.org/10.1016/j.procs.2017.05.234
Kusakci, A. O., & Cesur, E. K. (2020). Retailer layout design: a novel hybrid approach with association rules mining and MCRAFT. International Journal of Industrial and Systems Engineering. https://doi.org/10.1504/IJISE.2020.108545
La Scalia, G., Micale, R., Giallanza, A., & Marannano, G. (2019). Firefly algorithm based upon slicing structure encoding for unequal facility layout problem. International Journal of Industrial Engineering Computations, 349–360. https://doi.org/10.5267/j.ijiec.2019.2.003
Lakehal, S., & Aitzai, A. (2024). A Modified Simulated Annealing and Enhanced Harmony Search Algorithms for the Continuous Facility Layout Problem (CFLP). Wseas Transactions On Business And Economics, 21, 2233–2243. https://doi.org/10.37394/23207.2024.21.183
Liu, J., & Liu, J. (2019). Applying multi-objective ant colony optimization algorithm for solving the unequal area facility layout problems. Applied Soft Computing, 74, 167–189. https://doi.org/10.1016/j.asoc.2018.10.012
Liu, J., Liu, S., Liu, Z., & Li, B. (2020). Configuration space evolutionary algorithm for multi-objective unequal-area facility layout problems with flexible bays. Applied Soft Computing, 89, 106052. https://doi.org/10.1016/j.asoc.2019.106052
Liu, J., Wang, D., He, K., & Xue, Y. (2017). Combining Wang–Landau sampling algorithm and heuristics for solving the unequal-area dynamic facility layout problem. European Journal of Operational Research, 262(3), 1052–1063. https://doi.org/10.1016/j.ejor.2017.04.002
Ludwika, A. S., Shalehah, M., Mohamad, R. R. A., Oktavia, A. T., Normasari, N. M. E., Tho, N. H., & Rifai, A. P. (2024). Facility Layout Planning of Sheet Metal Working Industry Using Metaheuristics. Spektrum Industri, 22(2), 163–178. https://doi.org/10.12928/si.v22i2.141
Luo, X., Yang, Y., Ge, Z., Wen, X., & Guan, F. (2015). Maintainability-based facility layout optimum design of ship cabin. International Journal of Production Research, 53(3), 677–694. https://doi.org/10.1080/00207543.2014.919416
Ma, J., Han, Z., Deng, Q., Huang, Y., & Feng, J. (2023). New hybrid algorithm combining multiple transportation modes for an environmental protection workshop layout. Journal of Ambient Intelligence and Humanized Computing, 14(10), 14189–14208. https://doi.org/10.1007/s12652-023-04655-0
Ma, S., Huang, Y., Liu, Y., Liu, H., Chen, Y., Wang, J., & Xu, J. (2023). Big data-driven correlation analysis based on clustering for energy-intensive manufacturing industries. In Applied Energy. Elsevier. https://www.sciencedirect.com/science/article/pii/S0306261923009728
Magableh, G. M., Shbail, T. B., Al-Namarneh, S. A., Azaizeh, R. L., & Hayajneh, N. J. (2024). Storage And Process Improvement in Manufacturing System. Proceedings on Engineering Sciences, 6(3), 1015–1020. https://doi.org/10.24874/PES06.03.014
McKendall, A., & Hakobyan, A. (2021). An Application of an Unequal-Area Facilities Layout Problem with Fixed-Shape Facilities. Algorithms, 14(11), 306. https://doi.org/10.3390/a14110306
Moatari-Kazerouni, A., Chinniah, Y., & Agard, B. (2015). Integration of occupational health and safety in the facility layout planning, part II: design of the kitchen of a hospital. International Journal of Production Research, 53(11), 3228–3242. https://doi.org/10.1080/00207543.2014.970711
Moradi, N. (2019). Stochastic Facility Layout Planning Problem: A Metaheuristic and Case Study. In Iranian Journal of Optimization. https://sanad.iau.ir/Journal/ijo/Article/1018771
Nordin, N. N., Ab Razak, R., & Marthandan, G. (2023). A Unique Strategy for Improving Facility Layout: An Introduction of The Origin Algorithm. Sustainability, 15(14), 11022. https://doi.org/10.3390/su151411022
Paes, F. G., Pessoa, A. A., & Vidal, T. (2017). A hybrid genetic algorithm with decomposition phases for the Unequal Area Facility Layout Problem. European Journal of Operational Research, 256(3), 742–756. https://doi.org/10.1016/j.ejor.2016.07.022
Park, H., & Seo, Y. (2019). An efficient algorithm for unequal area facilities layout planning with input and output points. INFOR: Information Systems and Operational Research, 57(1), 56–74. https://doi.org/10.1080/03155986.2017.1396709
Perez-Gosende, P., Mula, J., & Diaz-Madronero, M. (2021). Facility layout planning. An extended literature review. International Journal of Production Research, 59(12), 3777–3816. https://doi.org/10.1080/00207543.2021.1897176
Rodriguez, Y., Perez, E., & Robertson, M. M. (2022). Ergonomic Maturity Model: A tool for integrating ergonomics/human factors into organizations. Work, 73(s1), S279–S292. https://doi.org/10.3233/WOR-211142
Sengazhani Murugesan, V., Sequeira, A. H., Shetty, D. S., & Jauhar, S. K. (2020). Enhancement of mail operational performance of India post facility layout using AHP. International Journal of System Assurance Engineering and Management, 11(2), 261–273. https://doi.org/10.1007/s13198-019-00854-1
Senol, M. B., & Murat, E. A. (2023). A sequential solution heuristic for continuous facility layout problems. Annals of Operations Research, 320(1), 355–377. https://doi.org/10.1007/s10479-022-04907-w
Seyedi, S. B., Attari, M. Y. N., Ghadim, V. A. P., & Ala, A. (2024). An efficient computational model for unequal-area dynamic facility layout problems considering input/output locations under algorithms case. Sadhana. https://doi.org/10.1007/s12046-024-02550-8
Singh, S. P., & Sharma, R. R. K. (2006). A review of different approaches to the facility layout problems. The International Journal of Advanced Manufacturing Technology, 30(5–6), 425–433. https://doi.org/10.1007/s00170-005-0087-9
Talbi, E. (2009). Metaheuristics. Wiley. https://doi.org/10.1002/9780470496916
Tayal, A., & Singh, S. P. (2018). Integrating big data analytic and hybrid firefly-chaotic simulated annealing approach for facility layout problem. Annals of Operations Research, 270(1–2), 489–514. https://doi.org/10.1007/s10479-016-2237-x
Turgay, S. (2018). Multi Objective Simulated Annealing Approach for Facility Layout Design. International Journal of Mathematical, Engineering and Management Sciences, 3(4), 365–380. https://doi.org/10.33889/IJMEMS.2018.3.4-026
Vieira, E. S., & Gomes, J. (2009). A comparison of Scopus and Web of Science for a typical university. Scientometrics. https://doi.org/10.1007/s11192-009-2178-0
Xiao, X., Hu, Y., Wang, W., & Ren, W. (2019). A robust optimization approach for unequal-area dynamic facility layout with demand uncertainty. Procedia CIRP, 81, 594–599. https://doi.org/10.1016/j.procir.2019.03.161
Xiao, Y., Xie, Y., Kulturel-Konak, S., & Konak, A. (2017). A problem evolution algorithm with linear programming for the dynamic facility layout problem - A general layout formulation. Computers & Operations Research, 88, 187–207. https://doi.org/10.1016/j.cor.2017.06.025
Xie, Y., Zhou, S., Xiao, Y., Kulturel-Konak, S., & Konak, A. (2018). A b-accurate linearization method of Euclidean distance for the facility layout problem with heterogeneous distance metrics. European Journal of Operational Research, 265(1), 26–38. https://doi.org/10.1016/j.ejor.2017.07.052
Zha, S., Guo, Y., Huang, S., Wu, Q., & Tang, P. (2020). A hybrid optimization approach for unequal-sized dynamic facility layout problems under fuzzy random demands. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 234(3), 382–399. https://doi.org/10.1177/0954405419883046
Zhan, Z. H., Shi, L., Tan, K. C., & Zhang, J. (2022). A survey on evolutionary computation for complex continuous optimization. In Artificial Intelligence Review. Springer. https://doi.org/10.1007/s10462-021-10042-y
Zhang, Z., Gong, J., Liu, J., & Chen, F. (2022). A fast two-stage hybrid meta-heuristic algorithm for robust corridor allocation problem. Advanced Engineering Informatics, 53, 101700. https://doi.org/10.1016/j.aei.2022.101700
Zhu, J., & Liu, W. (2020). A tale of two databases: the use of Web of Science and Scopus in academic papers. Scientometrics. https://doi.org/10.1007/s11192-020-03387-8
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Donny Montreano, Dadan Umar Daihani, Winnie Septiani, Didien Suhardini

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





.png)



