Performance Analysis of the IndoBERT–Prophet Hybrid Model for Logistics Applications
DOI:
https://doi.org/10.12928/si.v23i2.480Keywords:
Courier services, Digital transformation, E-commerce, IndoBERT, Logistics performanceAbstract
The increasing competition in Indonesia’s logistics sector, particularly in digital courier applications, highlights the need for advanced analytical tools capable of understanding and predicting customer sentiment in real time. However, current sentiment analysis methods often lack contextual depth and predictive capability, limiting their practical value for decision-making. This study aims to develop and validate an integrated analytical framework that combines diagnostic and predictive analytics for logistics performance evaluation. The framework integrates a fine-tuned IndoBERT model for sentiment classification and a Prophet model for time-series forecasting, allowing the analysis of user reviews while accounting for external service disruptions. Empirical validation was conducted using 924 user reviews from the PosAja! application by PT Pos Indonesia. The IndoBERT model achieved an impressive 99.5% accuracy, effectively identifying two main complaint categories: application functionality issues and delivery delays. The Prophet forecasting component successfully modeled sentiment trends, revealing spikes in negative sentiment that strongly correlated with technical service disruptions, such as COD feature failures and server maintenance. The results confirm the framework’s robustness in both diagnosing and forecasting sentiment dynamics. User sentiment proved to be a sensitive real-time indicator of service stability and operational performance. The validated IndoBERT–Prophet hybrid framework provides a novel, data-driven approach for proactive decision-making and continuous service improvement in the logistics industry.
References
Abdullah, A. S., Ruchjana, B. N., Jaya, I. G. N. M., & Soemartini. (2021). Comparison of SARIMA and SVM model for rainfall forecasting in Bogor city, Indonesia. Journal of Physics: Conference Series, 1722(1), 012061. https://doi.org/10.1088/1742-6596/1722/1/012061
Akhtar, M. S., Chauhan, D., Ghosal, D., Poria, S., Ekbal, A., & Bhattacharyya, P. (2019). Multi-task Learning for Multi-modal Emotion Recognition and Sentiment Analysis. Proceedings of the 2019 Conference of the North, 370–379. https://doi.org/10.18653/v1/N19-1034
Alemerien, K., Al-Ghareeb, A., & Alksasbeh, M. Z. (2024). Sentiment analysis of online reviews: a machine learning based approach with TF-IDF vectorization. Journal of Mobile Multimedia. https://ieeexplore.ieee.org/abstract/document/10976588/
Alnoor, A., Tiberius, V., Atiyah, A. G., Khaw, K. W., & Yin, T. S. (2024). How positive and negative electronic word of mouth (eWOM) affects customers’ intention to use social commerce? A dual-stage multi group-SEM and ANN analysis. International Journal of Human-Computer Interaction. https://doi.org/10.1080/10447318.2022.2125610
Apriani, E., Indriani, Y., & Adawiyah, R. (2021). Pengambilan Keputusan, Sikap Dan Kepuasan Konsumen Terhadap Paket Nasi Liwet Di Rmsasa Bandar Lampung. Jurnal Ilmu-Ilmu Agribisnis, 8(2), 325. https://doi.org/10.23960/jiia.v9i2.5106
Damanik, E. O. P., Tarigan, W. J., Tampubolon, J., & Simanjuntak, D. C. Y. (2025). Digital Transformation of PT Pos: Customer Loyalty In The Era of Security and Data Technology. Jurnal Ekuilnomi. http://jurnal.usi.ac.id/index.php/ekuilnomi/article/view/1299
Draskovic, D., & Milanovic, S. (2025). Aspect-based sentiment analysis of user-generated content from a microblogging platform. In Journal of Big Data. Springer. https://doi.org/10.1186/s40537-025-01244-0
Ghatora, P. S., Hosseini, S. E., Pervez, S., Iqbal, M. J., & Shaukat, N. (2024). Sentiment Analysis of Product Reviews Using Machine Learning and Pre-Trained LLM. Big Data and Cognitive Computing, 8(12), 199. https://doi.org/10.3390/bdcc8120199
Guido, R., Ferrisi, S., Lofaro, D., & Conforti, D. (2024). An overview on the advancements of support vector machine models in healthcare applications: a review. In Information. mdpi.com. https://www.mdpi.com/2078-2489/15/4/235
Handoyo, S. (2024). Purchasing in the digital age: A meta-analytical perspective on trust, risk, security, and e-WOM in e-commerce. In Heliyon. cell.com. https://www.cell.com/heliyon/fulltext/S2405-8440(24)05745-1
He, W., Zha, S., & Li, L. (2013). Social media competitive analysis and text mining: A case study in the pizza industry. International Journal of Information Management, 33(3), 464–472. https://doi.org/10.1016/j.ijinfomgt.2013.01.001
Imron, S., Setiawan, E. I., & Santoso, J. (2023). Aspect based sentiment analysis marketplace product reviews using BERT, LSTM, and CNN. In Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi). academia.edu. https://www.academia.edu/download/115178772/767.pdf
Jarumaneeroj, P., Ramudhin, A., & Barnett Lawton, J. (2023). A connectivity-based approach to evaluating port importance in the global container shipping network. Maritime Economics & Logistics, 25(3), 602–622. https://doi.org/10.1057/s41278-022-00243-9
Khairi, L. I., & Cahyadi, E. R. (2023). Pengaruh Logistics Service Quality Terhadap Customer Satisfaction dan Customer Loyalty Pada Pengguna JNE dan J&T Express di Jabodetabek. Jurnal Aplikasi Bisnis Dan Manajemen, 9(2), 671. https://doi.org/10.17358/jabm.9.2.671
Kim, J. (2022). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. mlg.postech.ac.kr. http://mlg.postech.ac.kr/~jtkim/courses/2022-spring-trends-in-ml/materials/05_bert.pdf
LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539
Lin, W. (2023). BERT pre-training of deep bidirectional transformers for language understanding GPT generative pre-trained transformer LaMDA language model for.
Liu, B. (2020). Sentiment Analysis. Cambridge University Press. https://doi.org/10.1017/9781108639286
Maulana, M. N., Maniah, M., & Lestiani, M. E. (2025). The Influence of Digital Competence and ITC to Digital Transformation and the Implication on Company Performance in Tenggarong Branch Post Office. Journal of Advanced. http://karyailham.com.my/index.php/arca/article/view/250
Medhat, W., Hassan, A., & Korashy, H. (2014). Sentiment analysis algorithms and applications: A survey. Ain Shams Engineering Journal, 5(4), 1093–1113. https://doi.org/10.1016/j.asej.2014.04.011
Mulyati, E, Rachmatullah, M. I. C., & Firmansyah, A. S. (2025). Sentiment Analysis of Pospay Application Reviews Using the Bert Deep Learning Method. In Jurnal Teknik Informatika. https://journal.uinjkt.ac.id/ti/article/view/41116
Mulyati, E., & Hamidin, D. (2022). Pemetaan Layanan Jasa E-Commerce Di Kota Bandung Menggunakan Metode Multidimensional Scaling. Matrik: Jurnal Manajemen Dan Teknik Industri Produksi, 23(1), 39. https://doi.org/10.30587/matrik.v23i1.3596
Obiedat, R., Qaddoura, R., Ala’M, A. Z., & Al-Qaisi, L. (2022). Sentiment analysis of customers’ reviews using a hybrid evolutionary SVM-based approach in an imbalanced data distribution. Ieee Access. https://ieeexplore.ieee.org/abstract/document/9706209/
Septyarani, T. A., & Nurhadi, N. (2023). Pengaruh Kualitas Pelayanan dan Kepuasan Pelanggan terhadap Loyalitas Pelanggan. Widya Cipta: Jurnal Sekretari Dan Manajemen, 7(2), 218–227. https://doi.org/10.31294/widyacipta.v7i2.15877
Shaiful, G. N. (2020). Servqual: A multiple-item scale for measuring consumer perc. In J. Retail.
Suali, A. S., Srai, J. S., & Tsolakis, N. (2024). The role of digital platforms in e-commerce food supply chain resilience under exogenous disruptions. In Supply Chain Management: An International Journal. emerald.com. https://doi.org/10.1108/SCM-02-2023-0064
Sukma Rukmana, & Wiwik Handayani. (2023). Analysis of Service Science Design through Customer Experience to Increase PosAja Application User Satisfaction. Kontigensi: Jurnal Ilmiah Manajemen, 11(2). https://doi.org/10.56457/jimk.v11i2.402
Talaat, A. S. (2023). Sentiment analysis classification system using hybrid BERT models. In Journal of Big Data. Springer. https://doi.org/10.1186/s40537-023-00781-w
Tan, J., Wong, W. P., Tan, C. K., Jomthanachai, S., & Lim, C. P. (2024). Blockchain-based Logistics 4.0: enhancing performance of logistics service providers. Asia Pasific Journal of Marketing and Logistics. https://doi.org/10.1108/APJML-07-2023-0650
Wahyuningjati, T., & Purwanto, E. (2024). Exploring the influence of electronic word of mouth and customer reviews on purchase decisions: A study of trust as a mediating factor in the Shopee Marketplace. In MindVanguard. Behav. library.acadlore.com. https://library.acadlore.com/MVBB/2024/2/2/MVBB_02.02_01.pdf
Winkelhaus, S., & Grosse, E. H. (2020). Work Characteristics in Logistics 4.0: Conceptualization of a qualitative assessment in order picking. IFAC-PapersOnLine, 53(2), 10609–10614. https://doi.org/10.1016/j.ifacol.2020.12.2816
Yang, R., Ju, X., Guo, C., Ding, L., Li, M., & Zhang, B. (2025). A unified review of aspect sentiment triplet extraction methods in aspect-based sentiment analysis. Knowledge and Information Systems. https://doi.org/10.1007/s10115-025-02519-x
Yaqoob, A., Aziz, R. M., & Verma, N. K. (2023). Applications and techniques of machine learning in cancer classification: a systematic review. In Human-Centric Intelligent Systems. Springer. https://doi.org/10.1007/s44230-023-00041-3
Zeithaml, V. A. (1988). Servqual: A Multiple-Item Scale for Measuring Consumer Perceptions of Service Quality dalam Journal of Retailing: Spring.
Zhang, X., & Guo, C. (2024). Research on Multimodal Prediction of E-Commerce Customer Satisfaction Driven by Big Data. Applied Sciences, 14(18), 8181. https://doi.org/10.3390/app14188181
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Erna Mulyati, Maniah, Noviana, Nia Pardede

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.





.png)



